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§1.3 SPECIAL TENSORS

Knowing how tensors are defined and recognizing a tensor when it pops up in front of you are two

different things. Some quantities, which are tensors, frequently arise in applied problems and you should

learn to recognize these special tensors when they occur. In this section some important tensor quantities

are defined. We also consider how these special tensors can in turn be used to define other tensors.

Metric Tensor

Define yi, i = 1, . . . , N as independent coordinates in an N dimensional orthogonal Cartesian coordinate

system. The distance squared between two points yi and yi + dyi, i = 1, . . . , N is defined by the

expression

ds2 = dymdym = (dy1)2 + (dy2)2 + · · ·+ (dyN )2. (1.3.1)

Assume that the coordinates yi are related to a set of independent generalized coordinates xi, i = 1, . . . , N

by a set of transformation equations

yi = yi(x1, x2, . . . , xN ), i = 1, . . . , N. (1.3.2)

To emphasize that each yi depends upon the x coordinates we sometimes use the notation yi = yi(x), for

i = 1, . . . , N. The differential of each coordinate can be written as

dym =
∂ym

∂xj
dxj , m = 1, . . . , N, (1.3.3)

and consequently in the x-generalized coordinates the distance squared, found from the equation (1.3.1),

becomes a quadratic form. Substituting equation (1.3.3) into equation (1.3.1) we find

ds2 =
∂ym

∂xi

∂ym

∂xj
dxidxj = gij dxidxj (1.3.4)

where

gij =
∂ym

∂xi

∂ym

∂xj
, i, j = 1, . . . , N (1.3.5)

are called the metrices of the space defined by the coordinates xi, i = 1, . . . , N. Here the gij are functions of

the x coordinates and is sometimes written as gij = gij(x). Further, the metrices gij are symmetric in the

indices i and j so that gij = gji for all values of i and j over the range of the indices. If we transform to

another coordinate system, say xi, i = 1, . . . , N , then the element of arc length squared is expressed in terms

of the barred coordinates and ds2 = gij dxidxj , where gij = gij(x) is a function of the barred coordinates.

The following example demonstrates that these metrices are second order covariant tensors.
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EXAMPLE 1.3-1. Show the metric components gij are covariant tensors of the second order.

Solution: In a coordinate system xi, i = 1, . . . , N the element of arc length squared is

ds2 = gijdxidxj (1.3.6)

while in a coordinate system xi, i = 1, . . . , N the element of arc length squared is represented in the form

ds2 = gmndxmdxn. (1.3.7)

The element of arc length squared is to be an invariant and so we require that

gmndxmdxn = gijdxidxj (1.3.8)

Here it is assumed that there exists a coordinate transformation of the form defined by equation (1.2.30)

together with an inverse transformation, as in equation (1.2.32), which relates the barred and unbarred

coordinates. In general, if xi = xi(x), then for i = 1, . . . , N we have

dxi =
∂xi

∂xm dxm and dxj =
∂xj

∂xn dxn (1.3.9)

Substituting these differentials in equation (1.3.8) gives us the result

gmndxmdxn = gij
∂xi

∂xm

∂xj

∂xn dxmdxn or
(

gmn − gij
∂xi

∂xm

∂xj

∂xn

)
dxmdxn = 0

For arbitrary changes in dxm this equation implies that gmn = gij
∂xi

∂xm

∂xj

∂xn and consequently gij transforms

as a second order absolute covariant tensor.

EXAMPLE 1.3-2. (Curvilinear coordinates) Consider a set of general transformation equations from

rectangular coordinates (x, y, z) to curvilinear coordinates (u, v, w). These transformation equations and the

corresponding inverse transformations are represented

x = x(u, v, w)

y = y(u, v, w)

z = z(u, v, w).

u = u(x, y, z)

v = v(x, y, z)

w = w(x, y, z)

(1.3.10)

Here y1 = x, y2 = y, y3 = z and x1 = u, x2 = v, x3 = w are the Cartesian and generalized coordinates

and N = 3. The intersection of the coordinate surfaces u = c1,v = c2 and w = c3 define coordinate curves

of the curvilinear coordinate system. The substitution of the given transformation equations (1.3.10) into

the position vector ~r = x ê1 + y ê2 + z ê3 produces the position vector which is a function of the generalized

coordinates and

~r = ~r(u, v, w) = x(u, v, w) ê1 + y(u, v, w) ê2 + z(u, v, w) ê3
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and consequently d~r =
∂~r

∂u
du +

∂~r

∂v
dv +

∂~r

∂w
dw, where

~E1 =
∂~r

∂u
=

∂x

∂u
ê1 +

∂y

∂u
ê2 +

∂z

∂u
ê3

~E2 =
∂~r

∂v
=

∂x

∂v
ê1 +

∂y

∂v
ê2 +

∂z

∂v
ê3

~E3 =
∂~r

∂w
=

∂x

∂w
ê1 +

∂y

∂w
ê2 +

∂z

∂w
ê3.

(1.3.11)

are tangent vectors to the coordinate curves. The element of arc length in the curvilinear coordinates is

ds2 = d~r · d~r =
∂~r

∂u
· ∂~r

∂u
dudu +

∂~r

∂u
· ∂~r

∂v
dudv +

∂~r

∂u
· ∂~r

∂w
dudw

+
∂~r

∂v
· ∂~r

∂u
dvdu +

∂~r

∂v
· ∂~r

∂v
dvdv +

∂~r

∂v
· ∂~r

∂w
dvdw

+
∂~r

∂w
· ∂~r

∂u
dwdu +

∂~r

∂w
· ∂~r

∂v
dwdv +

∂~r

∂w
· ∂~r

∂w
dwdw.

(1.3.12)

Utilizing the summation convention, the above can be expressed in the index notation. Define the

quantities

g11 =
∂~r

∂u
· ∂~r

∂u

g21 =
∂~r

∂v
· ∂~r

∂u

g31 =
∂~r

∂w
· ∂~r

∂u

g12 =
∂~r

∂u
· ∂~r

∂v

g22 =
∂~r

∂v
· ∂~r

∂v

g32 =
∂~r

∂w
· ∂~r

∂v

g13 =
∂~r

∂u
· ∂~r

∂w

g23 =
∂~r

∂v
· ∂~r

∂w

g33 =
∂~r

∂w
· ∂~r

∂w

and let x1 = u, x2 = v, x3 = w. Then the above element of arc length can be expressed as

ds2 = ~Ei · ~Ej dxidxj = gijdxidxj , i, j = 1, 2, 3

where

gij = ~Ei · ~Ej =
∂~r

∂xi
· ∂~r

∂xj
=

∂ym

∂xi

∂ym

∂xj
, i, j free indices (1.3.13)

are called the metric components of the curvilinear coordinate system. The metric components may be

thought of as the elements of a symmetric matrix, since gij = gji. In the rectangular coordinate system

x, y, z, the element of arc length squared is ds2 = dx2 + dy2 + dz2. In this space the metric components are

gij =

 1 0 0
0 1 0
0 0 1

 .
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EXAMPLE 1.3-3. (Cylindrical coordinates (r, θ, z))

The transformation equations from rectangular coordinates to cylindrical coordinates can be expressed

as x = r cos θ, y = r sin θ, z = z. Here y1 = x, y2 = y, y3 = z and x1 = r, x2 = θ, x3 = z, and the

position vector can be expressed ~r = ~r(r, θ, z) = r cos θ ê1 + r sin θ ê2 + z ê3. The derivatives of this position

vector are calculated and we find

~E1 =
∂~r

∂r
= cos θ ê1 + sin θ ê2, ~E2 =

∂~r

∂θ
= −r sin θ ê1 + r cos θ ê2, ~E3 =

∂~r

∂z
= ê3.

From the results in equation (1.3.13), the metric components of this space are

gij =

 1 0 0
0 r2 0
0 0 1

 .

We note that since gij = 0 when i 6= j, the coordinate system is orthogonal.

Given a set of transformations of the form found in equation (1.3.10), one can readily determine the

metric components associated with the generalized coordinates. For future reference we list several differ-

ent coordinate systems together with their metric components. Each of the listed coordinate systems are

orthogonal and so gij = 0 for i 6= j. The metric components of these orthogonal systems have the form

gij =

 h2
1 0 0
0 h2

2 0
0 0 h2

3


and the element of arc length squared is

ds2 = h2
1(dx1)2 + h2

2(dx2)2 + h2
3(dx3)2.

1. Cartesian coordinates (x, y, z)
x = x

y = y

z = z

h1 = 1

h2 = 1

h3 = 1

The coordinate curves are formed by the intersection of the coordinate surfaces

x =Constant, y =Constant and z =Constant.
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Figure 1.3-1. Cylindrical coordinates.

2. Cylindrical coordinates (r, θ, z)

x = r cos θ

y = r sin θ

z = z

r ≥ 0

0 ≤ θ ≤ 2π

−∞ < z < ∞

h1 = 1

h2 = r

h3 = 1

The coordinate curves, illustrated in the figure 1.3-1, are formed by the intersection of the coordinate

surfaces
x2 + y2 = r2, Cylinders

y/x = tan θ Planes

z = Constant Planes.

3. Spherical coordinates (ρ, θ, φ)

x = ρ sin θ cosφ

y = ρ sin θ sinφ

z = ρ cos θ

ρ ≥ 0

0 ≤ θ ≤ π

0 ≤ φ ≤ 2π

h1 = 1

h2 = ρ

h3 = ρ sin θ

The coordinate curves, illustrated in the figure 1.3-2, are formed by the intersection of the coordinate

surfaces
x2 + y2 + z2 = ρ2 Spheres

x2 + y2 = tan2 θ z2 Cones

y = x tanφ Planes.

4. Parabolic cylindrical coordinates (ξ, η, z)

x = ξη

y =
1
2
(ξ2 − η2)

z = z

−∞ < ξ < ∞
−∞ < z < ∞
η ≥ 0

h1 =
√

ξ2 + η2

h2 =
√

ξ2 + η2

h3 = 1



70

Figure 1.3-2. Spherical coordinates.

The coordinate curves, illustrated in the figure 1.3-3, are formed by the intersection of the coordinate

surfaces

x2 = −2ξ2(y − ξ2

2
) Parabolic cylinders

x2 = 2η2(y +
η2

2
) Parabolic cylinders

z = Constant Planes.

Figure 1.3-3. Parabolic cylindrical coordinates in plane z = 0.

5. Parabolic coordinates (ξ, η, φ)

x = ξη cosφ

y = ξη sin φ

z =
1
2
(ξ2 − η2)

ξ ≥ 0

η ≥ 0

0 < φ < 2π

h1 =
√

ξ2 + η2

h2 =
√

ξ2 + η2

h3 = ξη
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The coordinate curves, illustrated in the figure 1.3-4, are formed by the intersection of the coordinate

surfaces

x2 + y2 = −2ξ2(z − ξ2

2
) Paraboloids

x2 + y2 = 2η2(z +
η2

2
) Paraboloids

y = x tanφ Planes.

Figure 1.3-4. Parabolic coordinates, φ = π/4.

6. Elliptic cylindrical coordinates (ξ, η, z)

x = cosh ξ cos η

y = sinh ξ sin η

z = z

ξ ≥ 0

0 ≤ η ≤ 2π

−∞ < z < ∞

h1 =
√

sinh2 ξ + sin2 η

h2 =
√

sinh2 ξ + sin2 η

h3 = 1

The coordinate curves, illustrated in the figure 1.3-5, are formed by the intersection of the coordinate

surfaces
x2

cosh2 ξ
+

y2

sinh2 ξ
= 1 Elliptic cylinders

x2

cos2 η
− y2

sin2 η
= 1 Hyperbolic cylinders

z = Constant Planes.
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Figure 1.3-5. Elliptic cylindrical coordinates in the plane z = 0.

7. Elliptic coordinates (ξ, η, φ)

x =
√

(1− η2)(ξ2 − 1) cosφ

y =
√

(1− η2)(ξ2 − 1) sinφ

z = ξη

1 ≤ ξ < ∞
− 1 ≤ η ≤ 1

0 ≤ φ < 2π

h1 =

√
ξ2 − η2

ξ2 − 1

h2 =

√
ξ2 − η2

1− η2

h3 =
√

(1 − η2)(ξ2 − 1)

The coordinate curves, illustrated in the figure 1.3-6, are formed by the intersection of the coordinate

surfaces
x2

ξ2 − 1
+

y2

ξ2 − 1
+

z2

ξ2
= 1 Prolate ellipsoid

z2

η2
− x2

1− η2
− y2

1− η2
= 1 Two-sheeted hyperboloid

y = x tanφ Planes

8. Bipolar coordinates (u, v, z)

x =
a sinh v

cosh v − cosu
, 0 ≤ u < 2π

y =
a sinu

cosh v − cosu
, −∞ < v < ∞

z = z −∞ < z < ∞

h2
1 = h2

2

h2
2 =

a2

(cosh v − cosu)2

h2
3 = 1
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Figure 1.3-6. Elliptic coordinates φ = π/4.

Figure 1.3-7. Bipolar coordinates.

The coordinate curves, illustrated in the figure 1.3-7, are formed by the intersection of the coordinate

surfaces

(x − a coth v)2 + y2 =
a2

sinh2 v
Cylinders

x2 + (y − a cotu)2 =
a2

sin2 u
Cylinders

z = Constant Planes.
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9. Conical coordinates (u, v, w)

x =
uvw

ab
, b2 > v2 > a2 > w2, u ≥ 0

y =
u

a

√
(v2 − a2)(w2 − a2)

a2 − b2

z =
u

b

√
(v2 − b2)(w2 − b2)

b2 − a2

h2
1 = 1

h2
2 =

u2(v2 − w2)
(v2 − a2)(b2 − v2)

h2
3 =

u2(v2 − w2)
(w2 − a2)(w2 − b2)

The coordinate curves, illustrated in the figure 1.3-8, are formed by the intersection of the coordinate

surfaces
x2 + y2 + z2 = u2 Spheres

x2

v2
+

y2

v2 − a2
+

z2

v2 − b2
=0, Cones

x2

w2
+

y2

w2 − a2
+

z2

w2 − b2
= 0, Cones.

Figure 1.3-8. Conical coordinates.

10. Prolate spheroidal coordinates (u, v, φ)

x = a sinhu sin v cosφ, u ≥ 0

y = a sinhu sin v sin φ, 0 ≤ v ≤ π

z = a coshu cos v, 0 ≤ φ < 2π

h2
1 = h2

2

h2
2 = a2(sinh2 u + sin2 v)

h2
3 = a2 sinh2 u sin2 v

The coordinate curves, illustrated in the figure 1.3-9, are formed by the intersection of the coordinate

surfaces
x2

(a sinh u)2
+

y2

(a sinhu)2
+

z2

(a coshu)2
= 1, Prolate ellipsoids

z2

(a cos v)2
− x2

(a sin v)2
− y2

(a sin v)2
= 1, Two-sheeted hyperboloid

y = x tanφ, Planes.
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Figure 1.3-9. Prolate spheroidal coordinates

11. Oblate spheroidal coordinates (ξ, η, φ)

x = a cosh ξ cos η cosφ, ξ ≥ 0

y = a cosh ξ cos η sin φ, −π

2
≤ η ≤ π

2
z = a sinh ξ sin η, 0 ≤ φ ≤ 2π

h2
1 = h2

2

h2
2 = a2(sinh2 ξ + sin2 η)

h2
3 = a2 cosh2 ξ cos2 η

The coordinate curves, illustrated in the figure 1.3-10, are formed by the intersection of the coordinate

surfaces
x2

(a cosh ξ)2
+

y2

(a cosh ξ)2
+

z2

(a sinh ξ)2
= 1, Oblate ellipsoids

x2

(a cos η)2
+

y2

(a cos η)2
− z2

(a sin η)2
= 1, One-sheet hyperboloids

y = x tanφ, Planes.

12. Toroidal coordinates (u, v, φ)

x =
a sinh v cosφ

cosh v − cosu
, 0 ≤ u < 2π

y =
a sinh v sin φ

cosh v − cosu
, −∞ < v < ∞

z =
a sin u

cosh v − cosu
, 0 ≤ φ < 2π

h2
1 = h2

2

h2
2 =

a2

(cosh v − cosu)2

h2
3 =

a2 sinh2 v

(cosh v − cosu)2

The coordinate curves, illustrated in the figure 1.3-11, are formed by the intersection of the coordinate

surfaces

x2 + y2 +
(
z − a cosu

sin u

)2

=
a2

sin2 u
, Spheres(√

x2 + y2 − a
cosh v

sinh v

)2

+ z2 =
a2

sinh2 v
, Torus

y = x tanφ, planes
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Figure 1.3-10. Oblate spheroidal coordinates

Figure 1.3-11. Toroidal coordinates

EXAMPLE 1.3-4. Show the Kronecker delta δi
j is a mixed second order tensor.

Solution: Assume we have a coordinate transformation xi = xi(x), i = 1, . . . , N of the form (1.2.30) and

possessing an inverse transformation of the form (1.2.32). Let δ
i

j and δi
j denote the Kronecker delta in the

barred and unbarred system of coordinates. By definition the Kronecker delta is defined

δ
i

j = δi
j =

{
0, if i 6= j

1, if i = j
.
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Employing the chain rule we write

∂xm

∂xn =
∂xm

∂xi

∂xi

∂xn =
∂xm

∂xi

∂xk

∂xn δi
k (1.3.14)

By hypothesis, the xi, i = 1, . . . , N are independent coordinates and therefore we have ∂xm

∂xn = δ
m

n and (1.3.14)

simplifies to

δ
m

n = δi
k

∂xm

∂xi

∂xk

∂xn .

Therefore, the Kronecker delta transforms as a mixed second order tensor.

Conjugate Metric Tensor

Let g denote the determinant of the matrix having the metric tensor gij , i, j = 1, . . . , N as its elements.

In our study of cofactor elements of a matrix we have shown that

cof(g1j)g1k + cof(g2j)g2k + . . . + cof(gNj)gNk = gδj
k. (1.3.15)

We can use this fact to find the elements in the inverse matrix associated with the matrix having the

components gij . The elements of this inverse matrix are

gij =
1
g
cof(gij) (1.3.16)

and are called the conjugate metric components. We examine the summation gijgik and find:

gijgik = g1jg1k + g2jg2k + . . . + gNjgNk

=
1
g

[cof(g1j)g1k + cof(g2j)g2k + . . . + cof(gNj)gNk]

=
1
g

[
gδj

k

]
= δj

k

The equation

gijgik = δj
k (1.3.17)

is an example where we can use the quotient law to show gij is a second order contravariant tensor. Because

of the symmetry of gij and gij the equation (1.3.17) can be represented in other forms.

EXAMPLE 1.3-5. Let Ai and Ai denote respectively the covariant and contravariant components of a

vector ~A. Show these components are related by the equations

Ai = gijA
j (1.3.18)

Ak = gjkAj (1.3.19)

where gij and gij are the metric and conjugate metric components of the space.
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Solution: We multiply the equation (1.3.18) by gim (inner product) and use equation (1.3.17) to simplify

the results. This produces the equation gimAi = gimgijA
j = δm

j Aj = Am. Changing indices produces the

result given in equation (1.3.19). Conversely, if we start with equation (1.3.19) and multiply by gkm (inner

product) we obtain gkmAk = gkmgjkAj = δj
mAj = Am which is another form of the equation (1.3.18) with

the indices changed.

Notice the consequences of what the equations (1.3.18) and (1.3.19) imply when we are in an orthogonal

Cartesian coordinate system where

gij =

 1 0 0
0 1 0
0 0 1

 and gij =

 1 0 0
0 1 0
0 0 1

 .

In this special case, we have
A1 = g11A

1 + g12A
2 + g13A

3 = A1

A2 = g21A
1 + g22A

2 + g23A
3 = A2

A3 = g31A
1 + g32A

2 + g33A
3 = A3.

These equations tell us that in a Cartesian coordinate system the contravariant and covariant components

are identically the same.

EXAMPLE 1.3-6. We have previously shown that if Ai is a covariant tensor of rank 1 its components in

a barred system of coordinates are

Ai = Aj
∂xj

∂xi . (1.3.20)

Solve for the Aj in terms of the Aj . (i.e. find the inverse transformation).

Solution: Multiply equation (1.3.20) by ∂xi

∂xm (inner product) and obtain

Ai
∂xi

∂xm
= Aj

∂xj

∂xi

∂xi

∂xm
. (1.3.21)

In the above product we have
∂xj

∂xi

∂xi

∂xm
=

∂xj

∂xm
= δj

m since xj and xm are assumed to be independent

coordinates. This reduces equation (1.3.21) to the form

Ai
∂xi

∂xm
= Ajδ

j
m = Am (1.3.22)

which is the desired inverse transformation.

This result can be obtained in another way. Examine the transformation equation (1.3.20) and ask the

question, “When we have two coordinate systems, say a barred and an unbarred system, does it matter which

system we call the barred system?” With some thought it should be obvious that it doesn’t matter which

system you label as the barred system. Therefore, we can interchange the barred and unbarred symbols in

equation (1.3.20) and obtain the result Ai = Aj
∂xj

∂xi
which is the same form as equation (1.3.22), but with

a different set of indices.
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Associated Tensors

Associated tensors can be constructed by taking the inner product of known tensors with either the

metric or conjugate metric tensor.

Definition: (Associated tensor) Any tensor constructed by multiplying (inner

product) a given tensor with the metric or conjugate metric tensor is called an

associated tensor.

Associated tensors are different ways of representing a tensor. The multiplication of a tensor by the

metric or conjugate metric tensor has the effect of lowering or raising indices. For example the covariant

and contravariant components of a vector are different representations of the same vector in different forms.

These forms are associated with one another by way of the metric and conjugate metric tensor and

gijAi = Aj gijA
j = Ai.

EXAMPLE 1.3-7. The following are some examples of associated tensors.

Aj = gijAi

Am
.jk = gmiAijk

A.nm
i.. = gmkgnjAijk

Aj = gijA
i

Ai.k
m = gmjA

ijk

Amjk = gimAi
.jk

Sometimes ‘dots’are used as indices in order to represent the location of the index that was raised or lowered.

If a tensor is symmetric, the position of the index is immaterial and so a dot is not needed. For example, if

Amn is a symmetric tensor, then it is easy to show that An
.m and A.n

m are equal and therefore can be written

as An
m without confusion.

Higher order tensors are similarly related. For example, if we find a fourth order covariant tensor Tijkm

we can then construct the fourth order contravariant tensor T pqrs from the relation

T pqrs = gpigqjgrkgsmTijkm.

This fourth order tensor can also be expressed as a mixed tensor. Some mixed tensors associated with

the given fourth order covariant tensor are:

T p
.jkm = gpiTijkm, T pq

..km = gqjT p
.jkm.
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Riemann Space VN

A Riemannian space VN is said to exist if the element of arc length squared has the form

ds2 = gijdxidxj (1.3.23)

where the metrices gij = gij(x1, x2, . . . , xN ) are continuous functions of the coordinates and are different

from constants. In the special case gij = δij the Riemannian space VN reduces to a Euclidean space EN .

The element of arc length squared defined by equation (1.3.23) is called the Riemannian metric and any

geometry which results by using this metric is called a Riemannian geometry. A space VN is called flat if

it is possible to find a coordinate transformation where the element of arclength squared is ds2 = εi(dxi)2

where each εi is either +1 or −1. A space which is not flat is called curved.

Geometry in VN

Given two vectors ~A = Ai ~Ei and ~B = Bj ~Ej , then their dot product can be represented

~A · ~B = AiBj ~Ei · ~Ej = gijA
iBj = AjB

j = AiBi = gijAjBi = | ~A|| ~B| cos θ. (1.3.24)

Consequently, in an N dimensional Riemannian space VN the dot or inner product of two vectors ~A and ~B

is defined:

gijA
iBj = AjB

j = AiBi = gijAjBi = AB cos θ. (1.3.25)

In this definition A is the magnitude of the vector Ai, the quantity B is the magnitude of the vector Bi and

θ is the angle between the vectors when their origins are made to coincide. In the special case that θ = 90◦

we have gijA
iBj = 0 as the condition that must be satisfied in order that the given vectors Ai and Bi are

orthogonal to one another. Consider also the special case of equation (1.3.25) when Ai = Bi and θ = 0. In

this case the equations (1.3.25) inform us that

ginAnAi = AiAi = ginAiAn = (A)2. (1.3.26)

From this equation one can determine the magnitude of the vector Ai. The magnitudes A and B can be

written A = (ginAiAn)
1
2 and B = (gpqB

pBq)
1
2 and so we can express equation (1.3.24) in the form

cos θ =
gijA

iBj

(gmnAmAn)
1
2 (gpqBpBq)

1
2
. (1.3.27)

An import application of the above concepts arises in the dynamics of rigid body motion. Note that if a

vector Ai has constant magnitude and the magnitude of dAi

dt is different from zero, then the vectors Ai and
dAi

dt must be orthogonal to one another due to the fact that gijA
i dAj

dt = 0. As an example, consider the unit

vectors ê1, ê2 and ê3 on a rotating system of Cartesian axes. We have for constants ci, i = 1, 6 that

d ê1

dt
= c1 ê2 + c2 ê3

d ê2

dt
= c3 ê3 + c4 ê1

d ê3

dt
= c5 ê1 + c6 ê2

because the derivative of any êi (i fixed) constant vector must lie in a plane containing the vectors êj and

êk, (j 6= i , k 6= i and j 6= k), since any vector in this plane must be perpendicular to êi.
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The above definition of a dot product in VN can be used to define unit vectors in VN .

Definition: (Unit vector) Whenever the magnitude of a vec-

tor Ai is unity, the vector is called a unit vector. In this case we

have

gijA
iAj = 1. (1.3.28)

EXAMPLE 1.3-8. (Unit vectors)

In VN the element of arc length squared is expressed ds2 = gij dxidxj which can be expressed in the

form 1 = gij
dxi

ds

dxj

ds
. This equation states that the vector

dxi

ds
, i = 1, . . . , N is a unit vector. One application

of this equation is to consider a particle moving along a curve in VN which is described by the parametric

equations xi = xi(t), for i = 1, . . . , N. The vector V i = dxi

dt , i = 1, . . . , N represents a velocity vector of the

particle. By chain rule differentiation we have

V i =
dxi

dt
=

dxi

ds

ds

dt
= V

dxi

ds
, (1.3.29)

where V = ds
dt is the scalar speed of the particle and dxi

ds is a unit tangent vector to the curve. The equation

(1.3.29) shows that the velocity is directed along the tangent to the curve and has a magnitude V. That is(
ds

dt

)2

= (V )2 = gijV
iV j .

EXAMPLE 1.3-9. (Curvilinear coordinates)

Find an expression for the cosine of the angles between the coordinate curves associated with the

transformation equations

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w).
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Figure 1.3-12. Angles between curvilinear coordinates.

Solution: Let y1 = x, y2 = y, y3 = z and x1 = u, x2 = v, x3 = w denote the Cartesian and curvilinear

coordinates respectively. With reference to the figure 1.3-12 we can interpret the intersection of the surfaces

v = c2 and w = c3 as the curve ~r = ~r(u, c2, c3) which is a function of the parameter u. By moving only along

this curve we have d~r =
∂~r

∂u
du and consequently

ds2 = d~r · d~r =
∂~r

∂u
· ∂~r

∂u
dudu = g11(dx1)2,

or

1 =
d~r

ds
· d~r

ds
= g11

(
dx1

ds

)2

.

This equation shows that the vector dx1

ds = 1√
g11

is a unit vector along this curve. This tangent vector can

be represented by tr(1) = 1√
g11

δr
1 .

The curve which is defined by the intersection of the surfaces u = c1 and w = c3 has the unit tangent

vector tr(2) = 1√
g22

δr
2. Similarly, the curve which is defined as the intersection of the surfaces u = c1 and

v = c2 has the unit tangent vector tr(3) = 1√
g33

δr
3 . The cosine of the angle θ12, which is the angle between the

unit vectors tr(1) and tr(2), is obtained from the result of equation (1.3.25). We find

cos θ12 = gpqt
p
(1)t

q
(2) = gpq

1√
g11

δp
1

1√
g22

δq
2 =

g12√
g11

√
g22

.

For θ13 the angle between the directions ti(1) and ti(3) we find

cos θ13 =
g13√

g11
√

g33
.

Finally, for θ23 the angle between the directions ti(2) and ti(3) we find

cos θ23 =
g23√

g22
√

g33
.

When θ13 = θ12 = θ23 = 90◦, we have g12 = g13 = g23 = 0 and the coordinate curves which make up the

curvilinear coordinate system are orthogonal to one another.

In an orthogonal coordinate system we adopt the notation

g11 = (h1)2, g22 = (h2)2, g33 = (h3)2 and gij = 0, i 6= j.
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Epsilon Permutation Symbol

Associated with the e−permutation symbols there are the epsilon permutation symbols defined by the

relations

εijk =
√

geijk and εijk =
1√
g
eijk (1.3.30)

where g is the determinant of the metrices gij .

It can be demonstrated that the eijk permutation symbol is a relative tensor of weight −1 whereas the

εijk permutation symbol is an absolute tensor. Similarly, the eijk permutation symbol is a relative tensor of

weight +1 and the corresponding εijk permutation symbol is an absolute tensor.

EXAMPLE 1.3-10. (ε permutation symbol)

Show that eijk is a relative tensor of weight −1 and the corresponding εijk permutation symbol is an

absolute tensor.

Solution: Examine the Jacobian

J
(x

x

)
=

∣∣∣∣∣∣∣
∂x1

∂x1
∂x1

∂x2
∂x1

∂x3

∂x2

∂x1
∂x2

∂x2
∂x2

∂x3

∂x3

∂x1
∂x3

∂x2
∂x3

∂x3

∣∣∣∣∣∣∣
and make the substitution

ai
j =

∂xi

∂xj , i, j = 1, 2, 3.

From the definition of a determinant we may write

eijkai
maj

nak
p = J(

x

x
)emnp. (1.3.31)

By definition, emnp = emnp in all coordinate systems and hence equation (1.3.31) can be expressed in the

form [
J(

x

x
)
]−1

eijk
∂xi

∂xm

∂xj

∂xn

∂xk

∂xp = emnp (1.3.32)

which demonstrates that eijk transforms as a relative tensor of weight −1.

We have previously shown the metric tensor gij is a second order covariant tensor and transforms

according to the rule gij = gmn
∂xm

∂xi

∂xn

∂xj . Taking the determinant of this result we find

g = |gij | = |gmn|
∣∣∣∣∂xm

∂xi

∣∣∣∣2 = g
[
J(

x

x
)
]2

(1.3.33)

where g is the determinant of (gij) and g is the determinant of (gij). This result demonstrates that g is a

scalar invariant of weight +2. Taking the square root of this result we find that√
g =

√
gJ(

x

x
). (1.3.34)

Consequently, we call
√

g a scalar invariant of weight +1. Now multiply both sides of equation (1.3.32) by
√

g and use (1.3.34) to verify the relation

√
g eijk

∂xi

∂xm

∂xj

∂xn

∂xk

∂xp =
√

g emnp. (1.3.35)

This equation demonstrates that the quantity εijk =
√

g eijk transforms like an absolute tensor.
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Figure 1.3-14. Translation followed by rotation of axes

In a similar manner one can show eijk is a relative tensor of weight +1 and εijk = 1√
g eijk is an absolute

tensor. This is left as an exercise.

Another exercise found at the end of this section is to show that a generalization of the e − δ identity

is the epsilon identity

gijεiptεjrs = gprgts − gpsgtr. (1.3.36)

Cartesian Tensors

Consider the motion of a rigid rod in two dimensions. No matter how complicated the movement of

the rod is we can describe the motion as a translation followed by a rotation. Consider the rigid rod AB

illustrated in the figure 1.3-13.

Figure 1.3-13. Motion of rigid rod

In this figure there is a before and after picture of the rod’s position. By moving the point B to B′ we

have a translation. This is then followed by a rotation holding B fixed.
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Figure 1.3-15. Rotation of axes

A similar situation exists in three dimensions. Consider two sets of Cartesian axes, say a barred and

unbarred system as illustrated in the figure 1.3-14. Let us translate the origin 0 to 0 and then rotate the

(x, y, z) axes until they coincide with the (x, y, z) axes. We consider first the rotation of axes when the

origins 0 and 0 coincide as the translational distance can be represented by a vector bk, k = 1, 2, 3. When

the origin 0 is translated to 0 we have the situation illustrated in the figure 1.3-15, where the barred axes

can be thought of as a transformation due to rotation.

Let

~r = x ê1 + y ê2 + z ê3 (1.3.37)

denote the position vector of a variable point P with coordinates (x, y, z) with respect to the origin 0 and the

unit vectors ê1, ê2, ê3. This same point, when referenced with respect to the origin 0 and the unit vectors

ê1, ê2, ê3, has the representation

~r = x ê1 + y ê2 + z ê3. (1.3.38)

By considering the projections of ~r upon the barred and unbarred axes we can construct the transformation

equations relating the barred and unbarred axes. We calculate the projections of ~r onto the x, y and z axes

and find:
~r · ê1 = x = x( ê1 · ê1) + y( ê2 · ê1) + z( ê3 · ê1)

~r · ê2 = y = x( ê1 · ê2) + y( ê2 · ê2) + z( ê3 · ê2)

~r · ê3 = z = x( ê1 · ê3) + y( ê2 · ê3) + z( ê3 · ê3).

(1.3.39)

We also calculate the projection of ~r onto the x, y, z axes and find:

~r · ê1 = x = x( ê1 · ê1) + y( ê2 · ê1) + z( ê3 · ê1)

~r · ê2 = y = x( ê1 · ê2) + y( ê2 · ê2) + z( ê3 · ê2)

~r · ê3 = z = x( ê1 · ê3) + y( ê2 · ê3) + z( ê3 · ê3).

(1.3.40)

By introducing the notation (y1, y2, y3) = (x, y, z) (y1, y2, y3) = (x, y, z) and defining θij as the angle

between the unit vectors êi and êj , we can represent the above transformation equations in a more concise
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form. We observe that the direction cosines can be written as

`11 = ê1 · ê1 = cos θ11

`21 = ê2 · ê1 = cos θ21

`31 = ê3 · ê1 = cos θ31

`12 = ê1 · ê2 = cos θ12

`22 = ê2 · ê2 = cos θ22

`32 = ê3 · ê2 = cos θ32

`13 = ê1 · ê3 = cos θ13

`23 = ê2 · ê3 = cos θ23

`33 = ê3 · ê3 = cos θ33

(1.3.41)

which enables us to write the equations (1.3.39) and (1.3.40) in the form

yi = `ijyj and yi = `jiyj . (1.3.42)

Using the index notation we represent the unit vectors as:

êr = `pr êp or êp = `pr êr (1.3.43)

where `pr are the direction cosines. In both the barred and unbarred system the unit vectors are orthogonal

and consequently we must have the dot products

êr · êp = δrp and êm · ên = δmn (1.3.44)

where δij is the Kronecker delta. Substituting equation (1.3.43) into equation (1.3.44) we find the direction

cosines `ij must satisfy the relations:

êr · ês = `pr êp · `ms êm = `pr`ms êp · êm = `pr`msδpm = `mr`ms = δrs

and êr · ês = `rm êm · `sn ên = `rm`sn êm · ên = `rm`snδmn = `rm`sm = δrs.

The relations

`mr`ms = δrs and `rm`sm = δrs, (1.3.45)

with summation index m, are important relations which are satisfied by the direction cosines associated with

a rotation of axes.

Combining the rotation and translation equations we find

yi = `ijyj︸ ︷︷ ︸
rotation

+ bi︸︷︷︸
translation

. (1.3.46)

We multiply this equation by `ik and make use of the relations (1.3.45) to find the inverse transformation

yk = `ik(yi − bi). (1.3.47)

These transformations are called linear or affine transformations.

Consider the xi axes as fixed, while the xi axes are rotating with respect to the xi axes where both sets

of axes have a common origin. Let ~A = Ai êi denote a vector fixed in and rotating with the xi axes. We

denote by
d ~A

dt

∣∣∣∣
f

and
d ~A

dt

∣∣∣∣
r

the derivatives of ~A with respect to the fixed (f) and rotating (r) axes. We can
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write, with respect to the fixed axes, that
d ~A

dt

∣∣∣∣
f

=
dAi

dt
êi + Ai d êi

dt
. Note that

d êi

dt
is the derivative of a

vector with constant magnitude. Therefore there exists constants ωi, i = 1, . . . , 6 such that

d ê1

dt
= ω3 ê2 − ω2 ê3

d ê2

dt
= ω1 ê3 − ω4 ê1

d ê3

dt
= ω5 ê1 − ω6 ê2

i.e. see page 80. From the dot product ê1 · ê2 = 0 we obtain by differentiation ê1 · d ê2
dt + d ê1

dt · ê2 = 0

which implies ω4 = ω3. Similarly, from the dot products ê1 · ê3 and ê2 · ê3 we obtain by differentiation the

additional relations ω5 = ω2 and ω6 = ω1. The derivative of ~A with respect to the fixed axes can now be

represented

d ~A

dt

∣∣∣∣
f

=
dAi

dt
êi + (ω2A3 − ω3A2) ê1 + (ω3A1 − ω1A3) ê2 + (ω1A2 − ω2A1) ê3 =

d ~A

dt

∣∣∣∣
r

+ ~ω × ~A

where ~ω = ωi êi is called an angular velocity vector of the rotating system. The term ~ω × ~A represents the

velocity of the rotating system relative to the fixed system and
d ~A

dt

∣∣∣∣
r

=
dAi

dt
êi represents the derivative with

respect to the rotating system.

Employing the special transformation equations (1.3.46) let us examine how tensor quantities transform

when subjected to a translation and rotation of axes. These are our special transformation laws for Cartesian

tensors. We examine only the transformation laws for first and second order Cartesian tensor as higher order

transformation laws are easily discerned. We have previously shown that in general the first and second order

tensor quantities satisfy the transformation laws:

Ai = Aj
∂yj

∂yi

(1.3.48)

A
i
= Aj ∂yi

∂yj
(1.3.49)

A
mn

= Aij ∂ym

∂yi

∂yn

∂yj
(1.3.50)

Amn = Aij
∂yi

∂ym

∂yj

∂yn

(1.3.51)

A
m

n = Ai
j

∂ym

∂yi

∂yj

∂yn

(1.3.52)

For the special case of Cartesian tensors we assume that yi and yi, i = 1, 2, 3 are linearly independent. We

differentiate the equations (1.3.46) and (1.3.47) and find

∂yi

∂yk

= `ij

∂yj

∂yk

= `ijδjk = `ik, and
∂yk

∂ym
= `ik

∂yi

∂ym
= `ikδim = `mk.

Substituting these derivatives into the transformation equations (1.3.48) through (1.3.52) we produce the

transformation equations
Ai = Aj`ji

A
i
= Aj`ji

A
mn

= Aij`im`jn

Amn = Aij`im`jn

A
m

n = Ai
j`im`jn.
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Figure 1.3-16. Transformation to curvilinear coordinates

These are the transformation laws when moving from one orthogonal system to another. In this case the

direction cosines `im are constants and satisfy the relations given in equation (1.3.45). The transformation

laws for higher ordered tensors are similar in nature to those given above.

In the unbarred system (y1, y2, y3) the metric tensor and conjugate metric tensor are:

gij = δij and gij = δij

where δij is the Kronecker delta. In the barred system of coordinates, which is also orthogonal, we have

gij =
∂ym

∂yi

∂ym

∂yj

.

From the orthogonality relations (1.3.45) we find

gij = `mi`mj = δij and gij = δij .

We examine the associated tensors

Ai = gijAj

Aij = gimgjnAmn

Ai
n = gimAmn

Ai = gijA
j

Amn = gmignjA
ij

Ai
n = gnjA

ij

and find that the contravariant and covariant components are identical to one another. This holds also in

the barred system of coordinates. Also note that these special circumstances allow the representation of

contractions using subscript quantities only. This type of a contraction is not allowed for general tensors. It

is left as an exercise to try a contraction on a general tensor using only subscripts to see what happens. Note

that such a contraction does not produce a tensor. These special situations are considered in the exercises.

Physical Components

We have previously shown an arbitrary vector ~A can be represented in many forms depending upon

the coordinate system and basis vectors selected. For example, consider the figure 1.3-16 which illustrates a

Cartesian coordinate system and a curvilinear coordinate system.
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Figure 1.3-17. Physical components

In the Cartesian coordinate system we can represent a vector ~A as

~A = Ax ê1 + Ay ê2 + Az ê3

where ( ê1, ê2, ê3) are the basis vectors. Consider a coordinate transformation to a more general coordinate

system, say (x1, x2, x3). The vector ~A can be represented with contravariant components as

~A = A1 ~E1 + A2 ~E2 + A3 ~E3 (1.3.53)

with respect to the tangential basis vectors ( ~E1, ~E2, ~E3). Alternatively, the same vector ~A can be represented

in the form
~A = A1

~E1 + A2
~E2 + A3

~E3 (1.3.54)

having covariant components with respect to the gradient basis vectors (~E1, ~E2, ~E3). These equations are

just different ways of representing the same vector. In the above representations the basis vectors need not

be orthogonal and they need not be unit vectors. In general, the physical dimensions of the components Ai

and Aj are not the same.

The physical components of the vector ~A in a direction is defined as the projection of ~A upon a unit

vector in the desired direction. For example, the physical component of ~A in the direction ~E1 is

~A ·
~E1

| ~E1|
=

A1

| ~E1|
= projection of ~A on ~E1. (1.3.58)

Similarly, the physical component of ~A in the direction ~E1 is

~A ·
~E1

| ~E1| =
A1

| ~E1| = projection of ~A on ~E1. (1.3.59)

EXAMPLE 1.3-11. (Physical components) Let α, β, γ denote nonzero positive constants such that the

product relation αγ = 1 is satisfied. Consider the nonorthogonal basis vectors

~E1 = α ê1, ~E2 = β ê1 + γ ê2, ~E3 = ê3

illustrated in the figure 1.3-17.
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It is readily verified that the reciprocal basis is

~E1 = γ ê1 − β ê2, ~E2 = α ê2, ~E3 = ê3.

Consider the problem of representing the vector ~A = Ax ê1 + Ay ê2 in the contravariant vector form

~A = A1 ~E1 + A2 ~E2 or tensor form Ai, i = 1, 2.

This vector has the contravariant components

A1 = ~A · ~E1 = γAx − βAy and A2 = ~A · ~E2 = αAy .

Alternatively, this same vector can be represented as the covariant vector

~A = A1
~E1 + A2

~E2 which has the tensor form Ai, i = 1, 2.

The covariant components are found from the relations

A1 = ~A · ~E1 = αAx A2 = ~A · ~E2 = βAx + γAy.

The physical components of ~A in the directions ~E1 and ~E2 are found to be:

~A ·
~E1

| ~E1| =
A1

| ~E1| =
γAx − βAy√

γ2 + β2
= A(1)

~A ·
~E2

| ~E2| =
A2

| ~E2| =
αAy

α
= Ay = A(2).

Note that these same results are obtained from the dot product relations using either form of the vector ~A.

For example, we can write

~A ·
~E1

| ~E1| =
A1( ~E1 · ~E1) + A2( ~E2 · ~E1)

| ~E1| = A(1)

and ~A ·
~E2

| ~E2| =
A1( ~E1 · ~E2) + A2( ~E2 · ~E2)

| ~E2| = A(2).

In general, the physical components of a vector ~A in a direction of a unit vector λi is the generalized

dot product in VN . This dot product is an invariant and can be expressed

gijA
iλj = Aiλi = Aiλ

i = projection of ~A in direction of λi
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Physical Components For Orthogonal Coordinates

In orthogonal coordinates observe the element of arc length squared in V3 is

ds2 = gijdxidxj = (h1)2(dx1)2 + (h2)2(dx2)2 + (h3)2(dx3)2

where

gij =

 (h1)2 0 0
0 (h2)2 0
0 0 (h3)2

 . (1.3.60)

In this case the curvilinear coordinates are orthogonal and

h2
(i) = g(i)(i) i not summed and gij = 0, i 6= j.

At an arbitrary point in this coordinate system we take λi, i = 1, 2, 3 as a unit vector in the direction

of the coordinate x1. We then obtain

λ1 =
dx1

ds
, λ2 = 0, λ3 = 0.

This is a unit vector since

1 = gijλ
iλj = g11λ

1λ1 = h2
1(λ

1)2

or λ1 = 1
h1

. Here the curvilinear coordinate system is orthogonal and in this case the physical component

of a vector Ai, in the direction xi, is the projection of Ai on λi in V3. The projection in the x1 direction is

determined from

A(1) = gijA
iλj = g11A

1λ1 = h2
1A

1 1
h1

= h1A
1.

Similarly, we choose unit vectors µi and νi, i = 1, 2, 3 in the x2 and x3 directions. These unit vectors

can be represented

µ1 =0,

ν1 =0,

µ2 =
dx2

ds
=

1
h2

,

ν2 =0,

µ3 =0

ν3 =
dx3

ds
=

1
h3

and the physical components of the vector Ai in these directions are calculated as

A(2) = h2A
2 and A(3) = h3A

3.

In summary, we can say that in an orthogonal coordinate system the physical components of a contravariant

tensor of order one can be determined from the equations

A(i) = h(i)A
(i) = √

g(i)(i)A
(i), i = 1, 2 or 3 no summation on i,

which is a short hand notation for the physical components (h1A
1, h2A

2, h3A
3). In an orthogonal coordinate

system the nonzero conjugate metric components are

g(i)(i) =
1

g(i)(i)
, i = 1, 2, or 3 no summation on i.
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These components are needed to calculate the physical components associated with a covariant tensor of

order one. For example, in the x1−direction, we have the covariant components

λ1 = g11λ
1 = h2

1

1
h1

= h1, λ2 = 0, λ3 = 0

and consequently the projection in V3 can be represented

gijA
iλj = gijA

igjmλm = Ajg
jmλm = A1λ1g

11 = A1h1
1
h2

1

=
A1

h1
= A(1).

In a similar manner we calculate the relations

A(2) =
A2

h2
and A(3) =

A3

h3

for the other physical components in the directions x2 and x3. These physical components can be represented

in the short hand notation

A(i) =
A(i)

h(i)
=

A(i)√
g(i)(i)

, i = 1, 2 or 3 no summation on i.

In an orthogonal coordinate system the physical components associated with both the contravariant and

covariant components are the same. To show this we note that when Aigij = Aj is summed on i we obtain

A1g1j + A2g2j + A3g3j = Aj .

Since gij = 0 for i 6= j this equation reduces to

A(i)g(i)(i) = A(i), i not summed.

Another form for this equation is

A(i) = A(i)√g(i)(i) =
A(i)√
g(i)(i)

i not summed,

which demonstrates that the physical components associated with the contravariant and covariant compo-

nents are identical.

NOTATION The physical components are sometimes expressed by symbols with subscripts which represent

the coordinate curve along which the projection is taken. For example, let Hi denote the contravariant

components of a first order tensor. The following are some examples of the representation of the physical

components of H i in various coordinate systems:

orthogonal coordinate tensor physical

coordinates system components components

general (x1, x2, x3) Hi H(1), H(2), H(3)

rectangular (x, y, z) Hi Hx, Hy, Hz

cylindrical (r, θ, z) Hi Hr, Hθ, Hz

spherical (ρ, θ, φ) Hi Hρ, Hθ, Hφ

general (u, v, w) Hi Hu, Hv, Hw
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Higher Order Tensors

The physical components associated with higher ordered tensors are defined by projections in VN just

like the case with first order tensors. For an nth ordered tensor Tij...k we can select n unit vectors λi, µi, . . . , νi

and form the inner product (projection)

Tij...kλiµj . . . νk.

When projecting the tensor components onto the coordinate curves, there are N choices for each of the unit

vectors. This produces Nn physical components.

The above inner product represents the physical component of the tensor Tij...k along the directions of

the unit vectors λi, µi, . . . , νi. The selected unit vectors may or may not be orthogonal. In the cases where

the selected unit vectors are all orthogonal to one another, the calculation of the physical components is

greatly simplified. By relabeling the unit vectors λi
(m), λ

i
(n), . . . , λ

i
(p) where (m), (n), ..., (p) represent one of

the N directions, the physical components of a general nth order tensor is represented

T (m n . . . p) = Tij...kλi
(m)λ

j
(n) . . . λk

(p)

EXAMPLE 1.3-12. (Physical components)

In an orthogonal curvilinear coordinate system V3 with metric gij , i, j = 1, 2, 3, find the physical com-

ponents of

(i) the second order tensor Aij . (ii) the second order tensor Aij . (iii) the second order tensor Ai
j .

Solution: The physical components of Amn, m, n = 1, 2, 3 along the directions of two unit vectors λi and

µi is defined as the inner product in V3. These physical components can be expressed

A(ij) = Amnλm
(i)µ

n
(j) i, j = 1, 2, 3,

where the subscripts (i) and (j) represent one of the coordinate directions. Dropping the subscripts (i) and

(j), we make the observation that in an orthogonal curvilinear coordinate system there are three choices for

the direction of the unit vector λi and also three choices for the direction of the unit vector µi. These three

choices represent the directions along the x1, x2 or x3 coordinate curves which emanate from a point of the

curvilinear coordinate system. This produces a total of nine possible physical components associated with

the tensor Amn.

For example, we can obtain the components of the unit vector λi, i = 1, 2, 3 in the x1 direction directly

from an examination of the element of arc length squared

ds2 = (h1)2(dx1)2 + (h2)2(dx2)2 + (h3)2(dx3)2.

By setting dx2 = dx3 = 0, we find

dx1

ds
=

1
h1

= λ1, λ2 = 0, λ3 = 0.

This is the vector λi
(1), i = 1, 2, 3. Similarly, if we choose to select the unit vector λi, i = 1, 2, 3 in the x2

direction, we set dx1 = dx3 = 0 in the element of arc length squared and find the components

λ1 = 0, λ2 =
dx2

ds
=

1
h2

, λ3 = 0.
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This is the vector λi
(2), i = 1, 2, 3. Finally, if we select λi, i = 1, 2, 3 in the x3 direction, we set dx1 = dx2 = 0

in the element of arc length squared and determine the unit vector

λ1 = 0, λ2 = 0, λ3 =
dx3

ds
=

1
h3

.

This is the vector λi
(3), i = 1, 2, 3. Similarly, the unit vector µi can be selected as one of the above three

directions. Examining all nine possible combinations for selecting the unit vectors, we calculate the physical

components in an orthogonal coordinate system as:

A(11) =
A11

h1h1

A(21) =
A21

h1h2

A(31) =
A31

h3h1

A(12) =
A12

h1h2

A(22) =
A22

h2h2

A(32) =
A32

h3h2

A(13) =
A13

h1h3

A(23) =
A23

h2h3

A(33) =
A33

h3h3

These results can be written in the more compact form

A(ij) =
A(i)(j)

h(i)h(j)
no summation on i or j . (1.3.61)

For mixed tensors we have

Ai
j = gimAmj = gi1A1j + gi2A2j + gi3A3j . (1.3.62)

From the fact gij = 0 for i 6= j, together with the physical components from equation (1.3.61), the equation

(1.3.62) reduces to

A
(i)
(j) = g(i)(i)A(i)(j) =

1
h2

(i)

· h(i)h(j)A(ij) no summation on i and i, j = 1, 2 or 3.

This can also be written in the form

A(ij) = A
(i)
(j)

h(i)

h(j)
no summation on i or j. (1.3.63)

Hence, the physical components associated with the mixed tensor Ai
j in an orthogonal coordinate system

can be expressed as
A(11) = A1

1

A(21) = A2
1

h2

h1

A(31) = A3
1

h3

h1

A(12) = A1
2

h1

h2

A(22) = A2
2

A(32) = A3
2

h3

h2

A(13) = A1
3

h1

h3

A(23) = A2
3

h2

h3

A(33) = A3
3.

For second order contravariant tensors we may write

Aijgjm = Ai
m = Ai1g1m + Ai2g2m + Ai3g3m.
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We use the fact gij = 0 for i 6= j together with the physical components from equation (1.3.63) to reduce the

above equation to the form A
(i)
(m) = A(i)(m)g(m)(m) no summation on m . In terms of physical components

we have

h(m)

h(i)
A(im) = A(i)(m)h2

(m) or A(im) = A(i)(m)h(i)h(m). no summation i, m = 1, 2, 3 (1.3.64)

Examining the results from equation (1.3.64) we find that the physical components associated with the

contravariant tensor Aij , in an orthogonal coordinate system, can be written as:

A(11) = A11h1h1

A(21) = A21h2h1

A(31) = A31h3h1

A(12) = A12h1h2

A(22) = A22h2h2

A(32) = A32h3h2

A(13) = A13h1h3

A(23) = A23h2h3

A(33) = A33h3h3.

Physical Components in General

In an orthogonal curvilinear coordinate system, the physical components associated with the nth order

tensor Tij...kl along the curvilinear coordinate directions can be represented:

T (ij . . . kl) =
T(i)(j)...(k)(l)

h(i)h(j) . . . h(k)h(l)
no summations.

These physical components can be related to the various tensors associated with Tij...kl. For example, in

an orthogonal coordinate system, the physical components associated with the mixed tensor T ij...m
n...kl can be

expressed as:

T (ij . . . m n . . . kl) = T
(i)(j)...(m)
(n)...(k)(l)

h(i)h(j) . . . h(m)

h(n) . . . h(k)h(l)
no summations. (1.3.65)

EXAMPLE 1.3-13. (Physical components) Let xi = xi(t), i = 1, 2, 3 denote the position vector of a

particle which moves as a function of time t. Assume there exists a coordinate transformation xi = xi(x), for

i = 1, 2, 3, of the form given by equations (1.2.33). The position of the particle when referenced with respect

to the barred system of coordinates can be found by substitution. The generalized velocity of the particle

in the unbarred system is a vector with components

vi =
dxi

dt
, i = 1, 2, 3.

The generalized velocity components of the same particle in the barred system is obtained from the chain

rule. We find this velocity is represented by

vi =
dxi

dt
=

∂xi

∂xj

dxj

dt
=

∂xi

∂xj
vj .

This equation implies that the contravariant quantities

(v1, v2, v3) = (
dx1

dt
,
dx2

dt
,
dx3

dt
)
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are tensor quantities. These quantities are called the components of the generalized velocity. The coordinates

x1, x2, x3 are generalized coordinates. This means we can select any set of three independent variables for

the representation of the motion. The variables selected might not have the same dimensions. For example,

in cylindrical coordinates we let (x1 = r, x2 = θ, x3 = z). Here x1 and x3 have dimensions of distance but x2

has dimensions of angular displacement. The generalized velocities are

v1 =
dx1

dt
=

dr

dt
, v2 =

dx2

dt
=

dθ

dt
, v3 =

dx3

dt
=

dz

dt
.

Here v1 and v3 have units of length divided by time while v2 has the units of angular velocity or angular

change divided by time. Clearly, these dimensions are not all the same. Let us examine the physical

components of the generalized velocities. We find in cylindrical coordinates h1 = 1, h2 = r, h3 = 1 and the

physical components of the velocity have the forms:

vr = v(1) = v1h1 =
dr

dt
, vθ = v(2) = v2h2 = r

dθ

dt
, vz = v(3) = v3h3 =

dz

dt
.

Now the physical components of the velocity all have the same units of length divided by time.

Additional examples of the use of physical components are considered later. For the time being, just

remember that when tensor equations are derived, the equations are valid in any generalized coordinate

system. In particular, we are interested in the representation of physical laws which are to be invariant and

independent of the coordinate system used to represent these laws. Once a tensor equation is derived, we

can chose any type of generalized coordinates and expand the tensor equations. Before using any expanded

tensor equations we must replace all the tensor components by their corresponding physical components in

order that the equations are dimensionally homogeneous. It is these expanded equations, expressed in terms

of the physical components, which are used to solve applied problems.

Tensors and Multilinear Forms

Tensors can be thought of as being created by multilinear forms defined on some vector space V. Let

us define on a vector space V a linear form, a bilinear form and a general multilinear form. We can then

illustrate how tensors are created from these forms.

Definition: (Linear form) Let V denote a vector space which

contains vectors ~x, ~x1, ~x2, . . . . A linear form in ~x is a scalar function

ϕ(~x) having a single vector argument ~x which satisfies the linearity

properties:

(i) ϕ(~x1 + ~x2) = ϕ(~x1) + ϕ(~x2)

(ii) ϕ(µ~x1) = µϕ(~x1)
(1.3.66)

for all arbitrary vectors ~x1, ~x2 in V and all real numbers µ.
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An example of a linear form is the dot product relation

ϕ(~x) = ~A · ~x (1.3.67)

where ~A is a constant vector and ~x is an arbitrary vector belonging to the vector space V.

Note that a linear form in ~x can be expressed in terms of the components of the vector ~x and the base

vectors ( ê1, ê2, ê3) used to represent ~x. To show this, we write the vector ~x in the component form

~x = xi êi = x1 ê1 + x2 ê2 + x3 ê3,

where xi, i = 1, 2, 3 are the components of ~x with respect to the basis vectors ( ê1, ê2, ê3). By the linearity

property of ϕ we can write

ϕ(~x) = ϕ(xi êi) = ϕ(x1 ê1 + x2 ê2 + x3 ê3)

= ϕ(x1 ê1) + ϕ(x2 ê2) + ϕ(x3 ê3)

= x1ϕ( ê1) + x2ϕ( ê2) + x3ϕ( ê3) = xiϕ( êi)

Thus we can write ϕ(~x) = xiϕ( êi) and by defining the quantity ϕ( êi) = ai as a tensor we obtain ϕ(~x) = xiai.

Note that if we change basis from ( ê1, ê2, ê3) to ( ~E1, ~E2, ~E3) then the components of ~x also must change.

Letting xi denote the components of ~x with respect to the new basis, we would have

~x = xi ~Ei and ϕ(~x) = ϕ(xi ~Ei) = xiϕ( ~Ei).

The linear form ϕ defines a new tensor ai = ϕ( ~Ei) so that ϕ(~x) = xiai. Whenever there is a definite relation

between the basis vectors ( ê1, ê2, ê3) and ( ~E1, ~E2, ~E3), say,

~Ei =
∂xj

∂xi êj ,

then there exists a definite relation between the tensors ai and ai. This relation is

ai = ϕ( ~Ei) = ϕ(
∂xj

∂xi êj) =
∂xj

∂xi ϕ( êj) =
∂xj

∂xi aj .

This is the transformation law for an absolute covariant tensor of rank or order one.

The above idea is now extended to higher order tensors.

Definition: ( Bilinear form) A bilinear form in ~x and ~y is a

scalar function ϕ(~x, ~y) with two vector arguments, which satisfies

the linearity properties:

(i) ϕ(~x1 + ~x2, ~y1) = ϕ(~x1, ~y1) + ϕ(~x2, ~y1)

(ii) ϕ(~x1, ~y1 + ~y2) = ϕ(~x1, ~y1) + ϕ(~x1, ~y2)

(iii) ϕ(µ~x1, ~y1) = µϕ(~x1, ~y1)

(iv) ϕ(~x1, µ~y1) = µϕ(~x1, ~y1)

(1.3.68)

for arbitrary vectors ~x1, ~x2, ~y1, ~y2 in the vector space V and for all

real numbers µ.
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Note in the definition of a bilinear form that the scalar function ϕ is linear in both the arguments ~x and

~y. An example of a bilinear form is the dot product relation

ϕ(~x, ~y) = ~x · ~y (1.3.69)

where both ~x and ~y belong to the same vector space V.

The definition of a bilinear form suggests how multilinear forms can be defined.

Definition: (Multilinear forms) A multilinear form of degree M or a M degree

linear form in the vector arguments

~x1, ~x2, . . . , ~xM

is a scalar function

ϕ(~x1, ~x2, . . . , ~xM )

of M vector arguments which satisfies the property that it is a linear form in each of its

arguments. That is, ϕ must satisfy for each j = 1, 2, . . . , M the properties:

(i) ϕ(~x1, . . . , ~xj1 + ~xj2, . . . ~xM ) = ϕ(~x1, . . . , ~xj1, . . . , ~xM ) + ϕ(~x1, . . . , ~xj2, . . . , ~xM )

(ii) ϕ(~x1, . . . , µ~xj , . . . , ~xM ) = µϕ(~x1, . . . , ~xj , . . . , ~xM )
(1.3.70)

for all arbitrary vectors ~x1, . . . , ~xM in the vector space V and all real numbers µ.

An example of a third degree multilinear form or trilinear form is the triple scalar product

ϕ(~x, ~y, ~z) = ~x · (~y × ~z). (1.3.71)

Note that multilinear forms are independent of the coordinate system selected and depend only upon the

vector arguments. In a three dimensional vector space we select the basis vectors ( ê1, ê2, ê3) and represent

all vectors with respect to this basis set. For example, if ~x, ~y, ~z are three vectors we can represent these

vectors in the component forms

~x = xi êi, ~y = yj êj , ~z = zk êk (1.3.72)

where we have employed the summation convention on the repeated indices i, j and k. Substituting equations

(1.3.72) into equation (1.3.71) we obtain

ϕ(xi êi, y
j êj, z

k êk) = xiyjzkϕ( êi, êj , êk), (1.3.73)

since ϕ is linear in all its arguments. By defining the tensor quantity

ϕ( êi, êj , êk) = eijk (1.3.74)
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(See exercise 1.1, problem 15) the trilinear form, given by equation (1.3.71), with vectors from equations

(1.3.72), can be expressed as

ϕ(~x, ~y, ~z) = eijkxiyjzk, i, j, k = 1, 2, 3. (1.3.75)

The coefficients eijk of the trilinear form is called a third order tensor. It is the familiar permutation symbol

considered earlier.

In a multilinear form of degree M , ϕ(~x, ~y, . . . , ~z), the M arguments can be represented in a component

form with respect to a set of basis vectors ( ê1, ê2, ê3). Let these vectors have components xi, yi, zi, i = 1, 2, 3

with respect to the selected basis vectors. We then can write

~x = xi êi, ~y = yj êj, ~z = zk êk.

Substituting these vectors into the M degree multilinear form produces

ϕ(xi êi, y
j êj , . . . , z

k êk) = xiyj · · · zkϕ( êi, êj, . . . , êk). (1.3.76)

Consequently, the multilinear form defines a set of coefficients

aij...k = ϕ( êi, êj, . . . , êk) (1.3.77)

which are referred to as the components of a tensor of order M. The tensor is thus created by the multilinear

form and has M indices if ϕ is of degree M.

Note that if we change to a different set of basis vectors, say, (~E1, ~E2, ~E3) the multilinear form defines

a new tensor

aij...k = ϕ( ~Ei, ~Ej , . . . , ~Ek). (1.3.78)

This new tensor has a bar over it to distinguish it from the previous tensor. A definite relation exists between

the new and old basis vectors and consequently there exists a definite relation between the components of

the barred and unbarred tensors components. Recall that if we are given a set of transformation equations

yi = yi(x1, x2, x3), i = 1, 2, 3, (1.3.79)

from rectangular to generalized curvilinear coordinates, we can express the basis vectors in the new system

by the equations

~Ei =
∂yj

∂xi
êj, i = 1, 2, 3. (1.3.80)

For example, see equations (1.3.11) with y1 = x, y2 = y, y3 = z, x1 = u, x2 = v, x3 = w. Substituting

equations (1.3.80) into equations (1.3.78) we obtain

aij...k = ϕ(
∂yα

∂xi
êα,

∂yβ

∂xj
êβ , . . . ,

∂yγ

∂xk
êγ).

By the linearity property of ϕ, this equation is expressible in the form

aij...k =
∂yα

∂xi

∂yβ

∂xj
. . .

∂yγ

∂xk
ϕ( êα, êβ, . . . , êγ)

aij...k =
∂yα

∂xi

∂yβ

∂xj
. . .

∂yγ

∂xk
aαβ...γ

This is the familiar transformation law for a covariant tensor of degree M. By selecting reciprocal basis

vectors the corresponding transformation laws for contravariant vectors can be determined.

The above examples illustrate that tensors can be considered as quantities derivable from multilinear

forms defined on some vector space.
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Dual Tensors

The e-permutation symbol is often used to generate new tensors from given tensors. For Ti1i2...im a

skew-symmetric tensor, we define the tensor

T̂ j1j2...jn−m =
1

m!
ej1j2...jn−mi1i2...imTi1i2...im m ≤ n (1.3.81)

as the dual tensor associated with Ti1i2...im . Note that the e-permutation symbol or alternating tensor has

a weight of +1 and consequently the dual tensor will have a higher weight than the original tensor.

The e-permutation symbol has the following properties

ei1i2...iN ei1i2...iN = N !

ei1i2...iN ej1j2...jN = δi1i2...iN

j1j2...jN

ek1k2...kmi1i2...iN−mej1j2...jmi1i2...iN−m = (N −m)!δj1j2...jm

k1k2...km

δj1j2...jm

k1k2...km
Tj1j2...jm = m!Tk1k2...km .

(1.3.82)

Using the above properties we can solve for the skew-symmetric tensor in terms of the dual tensor. We find

Ti1i2...im =
1

(n−m)!
ei1i2...imj1j2...jn−m T̂ j1j2...jn−m . (1.3.83)

For example, if Aij i, j = 1, 2, 3 is a skew-symmetric tensor, we may associate with it the dual tensor

V i =
1
2!

eijkAjk,

which is a first order tensor or vector. Note that Aij has the components 0 A12 A13

−A12 0 A23

−A13 −A23 0

 (1.3.84)

and consequently, the components of the vector ~V are

(V 1, V 2, V 3) = (A23, A31, A12). (1.3.85)

Note that the vector components have a cyclic order to the indices which comes from the cyclic properties

of the e-permutation symbol.

As another example, consider the fourth order skew-symmetric tensor Aijkl , i, j, k, l = 1, . . . , n. We can

associate with this tensor any of the dual tensor quantities

V =
1
4!

eijklAijkl

V i =
1
4!

eijklmAjklm

V ij =
1
4!

eijklmnAklmn

V ijk =
1
4!

eijklmnpAlmnp

V ijkl =
1
4!

eijklmnprAmnpr

(1.3.86)

Applications of dual tensors can be found in section 2.2.
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EXERCISE 1.3

I 1.

(a) From the transformation law for the second order tensor gij = gab
∂xa

∂xi

∂xb

∂xj

solve for the gab in terms of gij .

(b) Show that if gij is symmetric in one coordinate system it is symmetric in all coordinate systems.

(c) Let g = det(gij) and g = det(gij) and show that g = gJ2(x
x) and consequently

√
g =

√
gJ(

x

x
). This

shows that g is a scalar invariant of weight 2 and
√

g is a scalar invariant of weight 1.

I 2. For

gij =
∂ym

∂xi

∂ym

∂xj
show that gij =

∂xi

∂ym

∂xj

∂ym

I 3. Show that in a curvilinear coordinate system which is orthogonal we have:

(a) g = det(gij) = g11g22g33

(b) gmn = gmn = 0 for m 6= n

(c) gNN =
1

gNN
for N = 1, 2, 3 (no summation on N)

I 4. Show that g = det(gij) =
∣∣∣∣ ∂yi

∂xj

∣∣∣∣2 = J2, where J is the Jacobian.

I 5. Define the quantities h1 = hu = | ∂~r

∂u
|, h2 = hv = |∂~r

∂v
|, h3 = hw = | ∂~r

∂w
| and construct the unit

vectors

êu =
1
h1

∂~r

∂u
, êv =

1
h2

∂~r

∂v
, êw =

1
h3

∂~r

∂w
.

(a) Assume the coordinate system is orthogonal and show that

g11 = h2
1 =

(
∂x

∂u

)2

+
(

∂y

∂u

)2

+
(

∂z

∂u

)2

,

g22 = h2
2 =

(
∂x

∂v

)2

+
(

∂y

∂v

)2

+
(

∂z

∂v

)2

,

g33 = h2
3 =

(
∂x

∂w

)2

+
(

∂y

∂w

)2

+
(

∂z

∂w

)2

.

(b) Show that d~r can be expressed in the form d~r = h1 êu du + h2 êv dv + h3 êw dw.

(c) Show that the volume of the elemental parallelepiped having d~r as diagonal can be represented

dτ =
√

g dudvdw = J dudvdw =
∂(x, y, z)
∂(u, v, w)

dudvdw.

Hint:

| ~A · ( ~B × ~C)| =
∣∣∣∣∣∣
A1 A2 A3

B1 B2 B3

C1 C2 C3

∣∣∣∣∣∣
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Figure 1.3-18 Oblique cylindrical coordinates.

I 6. For the change d~r given in problem 5, show the elemental parallelepiped with diagonal d~r has:

(a) the element of area dS1 =
√

g22g33 − g2
23 dvdw in the u =constant surface.

(b) The element of area dS2 =
√

g33g11 − g2
13 dudw in the v =constant surface.

(c) the element of area dS3 =
√

g11g22 − g2
12 dudv in the w =constant surface.

(d) What do the above elements of area reduce to in the special case the curvilinear coordinates are orthog-

onal? Hint:
| ~A× ~B| =

√
( ~A× ~B) · ( ~A× ~B)

=
√

( ~A · ~A)( ~B · ~B)− ( ~A · ~B)( ~A · ~B)
.

I 7. In Cartesian coordinates you are given the affine transformation. xi = `ijxj where

x1 =
1
15

(5x1 − 14x2 + 2x3), x2 = −1
3
(2x1 + x2 + 2x3), x3 =

1
15

(10x1 + 2x2 − 11x3)

(a) Show the transformation is orthogonal.

(b) A vector ~A(x1, x2, x3) in the unbarred system has the components

A1 = (x1)2, A2 = (x2)2 A3 = (x3)2.

Find the components of this vector in the barred system of coordinates.

I 8. Calculate the metric and conjugate metric tensors in cylindrical coordinates (r, θ, z).

I 9. Calculate the metric and conjugate metric tensors in spherical coordinates (ρ, θ, φ).

I 10. Calculate the metric and conjugate metric tensors in parabolic cylindrical coordinates (ξ, η, z).

I 11. Calculate the metric and conjugate metric components in elliptic cylindrical coordinates (ξ, η, z).

I 12. Calculate the metric and conjugate metric components for the oblique cylindrical coordinates (r, φ, η),

illustrated in figure 1.3-18, where x = r cosφ, y = r sin φ + η cosα, z = η sin α and α is a parameter

0 < α ≤ π
2 . Note: When α = π

2 cylindrical coordinates result.
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I 13. Calculate the metric and conjugate metric tensor associated with the toroidal surface coordinates

(ξ, η) illustrated in the figure 1.3-19, where

x = (a + b cos ξ) cos η

y = (a + b cos ξ) sin η

z = b sin ξ

a > b > 0

0 < ξ < 2π

0 < η < 2π

Figure 1.3-19. Toroidal surface coordinates

I 14. Calculate the metric and conjugate metric tensor associated with the spherical surface coordinates

(θ, φ), illustrated in the figure 1.3-20, where

x = a sin θ cosφ

y = a sin θ sin φ

z = a cos θ

a > 0 is constant

0 < φ < 2π

0 < θ <
π

2

I 15. Consider gij , i, j = 1, 2

(a) Show that g11 =
g22

∆
, g12 = g21 =

−g12

∆
, g22 =

g11

∆
where ∆ = g11g22 − g12g21.

(b) Use the results in part (a) and verify that gijg
ik = δk

j , i, j, k = 1, 2.

I 16. Let Ax, Ay, Az denote the constant components of a vector in Cartesian coordinates. Using the

transformation laws (1.2.42) and (1.2.47) to find the contravariant and covariant components of this vector

upon changing to (a) cylindrical coordinates (r, θ, z). (b) spherical coordinates (ρ, θ, φ) and (c) Parabolic

cylindrical coordinates.

I 17. Find the relationship which exists between the given associated tensors.

(a) Apqk
r. and Apq

rs

(b) Ap
.mrs and Apq

..rs

(c) Ai.j.
.l.m and A.s.p

r.t.

(d) Amnk and Aij
..k
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Figure 1.3-20. Spherical surface coordinates

I 18. Given the fourth order tensor Cikmp = λδikδmp + µ(δimδkp + δipδkm) + ν(δimδkp − δipδkm) where λ, µ

and ν are scalars and δij is the Kronecker delta. Show that under an orthogonal transformation of rotation of

axes with xi = `ijxj where `rs`is = `mr`mi = δri the components of the above tensor are unaltered. Any

tensor whose components are unaltered under an orthogonal transformation is called an ‘isotropic’ tensor.

Another way of stating this problem is to say “Show Cikmp is an isotropic tensor.”

I 19. Assume Aijl is a third order covariant tensor and Bpqmn is a fourth order contravariant tensor. Prove

that AiklB
klmn is a mixed tensor of order three, with one covariant and two contravariant indices.

I 20. Assume that Tmnrs is an absolute tensor. Show that if Tijkl + Tijlk = 0 in the coordinate system xr

then T ijkl + T ijlk = 0 in any other coordinate system xr.

I 21. Show that

εijkεrst =

∣∣∣∣∣∣
gir gis git

gjr gjs gjt

gkr gks gkt

∣∣∣∣∣∣
Hint: See problem 38, Exercise 1.1

I 22. Determine if the tensor equation εmnpεmij +εmnjεmpi = εmniεmpj is true or false. Justify your answer.

I 23. Prove the epsilon identity gijεiptεjrs = gprgts − gpsgtr. Hint: See problem 38, Exercise 1.1

I 24. Let Ars denote a skew-symmetric contravariant tensor and let cr =
1
2
εrmnAmn where

εrmn =
√

germn. Show that cr are the components of a covariant tensor. Write out all the components.

I 25. Let Ars denote a skew-symmetric covariant tensor and let cr =
1
2
εrmnAmn where εrmn =

1√
g
ermn.

Show that cr are the components of a contravariant tensor. Write out all the components.
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I 26. Let ApqB
qs
r = Cs

pr where Bqs
r is a relative tensor of weight ω1 and Cs

pr is a relative tensor of weight

ω2. Prove that Apq is a relative tensor of weight (ω2 − ω1).

I 27. When Ai
j is an absolute tensor prove that

√
gAi

j is a relative tensor of weight +1.

I 28. When Ai
j is an absolute tensor prove that 1√

gAi
j is a relative tensor of weight −1.

I 29.

(a) Show eijk is a relative tensor of weight +1.

(b) Show εijk = 1√
g eijk is an absolute tensor. Hint: See example 1.1-25.

I 30. The equation of a surface can be represented by an equation of the form Φ(x1, x2, x3) = constant.

Show that a unit normal vector to the surface can be represented by the vector

ni =
gij ∂Φ

∂xj

(gmn ∂Φ
∂xm

∂Φ
∂xn )

1
2
.

I 31. Assume that gij = λgij with λ a nonzero constant. Find and calculate gij in terms of gij .

I 32. Determine if the following tensor equation is true. Justify your answer.

εrjkAr
i + εirkAr

j + εijrA
r
k = εijkAr

r.

Hint: See problem 21, Exercise 1.1.

I 33. Show that for Ci and Ci associated tensors, and Ci = εijkAjBk, then Ci = εijkAjBk

I 34. Prove that εijk and εijk are associated tensors. Hint: Consider the determinant of gij .

I 35. Show εijkAiBjCk = εijkAiBjCk.

I 36. Let T i
j , i, j = 1, 2, 3 denote a second order mixed tensor. Show that the given quantities are scalar

invariants.
(i) I1 = T i

i

(ii) I2 =
1
2

[
(T i

i )
2 − T i

mT m
i

]
(iii) I3 = det|T i

j |

I 37.

(a) Assume Aij and Bij , i, j = 1, 2, 3 are absolute contravariant tensors, and determine if the inner product

Cik = AijBjk is an absolute tensor?

(b) Assume that the condition
∂xj

∂xn

∂xj

∂xm
= δnm is satisfied, and determine whether the inner product in

part (a) is a tensor?

(c) Consider only transformations which are a rotation and translation of axes yi = `ijyj + bi, where `ij are

direction cosines for the rotation of axes. Show that
∂yj

∂yn

∂yj

∂ym
= δnm
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I 38. For Aijk a Cartesian tensor, determine if a contraction on the indices i and j is allowed. That

is, determine if the quantity Ak = Aiik, (summation on i) is a tensor. Hint: See part(c) of the previous

problem.

I 39. Prove the e-δ identity eijkeimn = δj
mδk

n − δj
nδk

m.

I 40. Consider the vector Vk, k = 1, 2, 3 and define the matrix (aij) having the elements aij = eijkVk,

where eijk is the e−permutation symbol.

(a) Solve for Vi in terms of amn by multiplying both sides of the given equation by eijl and note the e− δ

identity allows us to simplify the result.

(b) Sum the given expression on k and then assign values to the free indices (i,j=1,2,3) and compare your

results with part (a).

(c) Is aij symmetric, skew-symmetric, or neither?

I 41. It can be shown that the continuity equation of fluid dynamics can be expressed in the tensor form

1√
g

∂

∂xr
(
√

g%V r) +
∂%

∂t
= 0,

where % is the density of the fluid, t is time, V r, with r = 1, 2, 3 are the velocity components and g = |gij |
is the determinant of the metric tensor. Employing the summation convention and replacing the tensor

components of velocity by their physical components, express the continuity equation in

(a) Cartesian coordinates (x, y, z) with physical components Vx, Vy, Vz .

(b) Cylindrical coordinates (r, θ, z) with physical components Vr, Vθ, Vz .

(c) Spherical coordinates (ρ, θ, φ) with physical components Vρ, Vθ, Vφ.

I 42. Let x1, x2, x3 denote a set of skewed coordinates with respect to the Cartesian coordinates y1, y2, y3.

Assume that ~E1, ~E2, ~E3 are unit vectors in the directions of the x1, x2 and x3 axes respectively. If the unit

vectors satisfy the relations
~E1 · ~E1 = 1

~E2 · ~E2 = 1

~E3 · ~E3 = 1

~E1 · ~E2 = cos θ12

~E1 · ~E3 = cos θ13

~E2 · ~E3 = cos θ23,

then calculate the metrices gij and conjugate metrices gij .

I 43. Let Aij , i, j = 1, 2, 3, 4 denote the skew-symmetric second rank tensor

Aij =


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 ,

where a, b, c, d, e, f are complex constants. Calculate the components of the dual tensor

V ij =
1
2
eijklAkl.
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I 44. In Cartesian coordinates the vorticity tensor at a point in a fluid medium is defined

ωij =
1
2

(
∂Vj

∂xi
− ∂Vi

∂xj

)
where Vi are the velocity components of the fluid at the point. The vorticity vector at a point in a fluid

medium in Cartesian coordinates is defined by ωi =
1
2
eijkωjk. Show that these tensors are dual tensors.

I 45. Write out the relation between each of the components of the dual tensors

T̂ ij =
1
2
eijklTkl i, j, k, l = 1, 2, 3, 4

and show that if ijkl is an even permutation of 1234, then T̂ ij = Tkl.

I 46. Consider the general affine transformation x̄i = aijxj where (x1, x2, x3) = (x, y, z) with inverse

transformation xi = bij x̄j . Determine (a) the image of the plane Ax + By + Cz + D = 0 under this

transformation and (b) the image of a second degree conic section

Ax2 + 2Bxy + Cy2 + Dx + Ey + F = 0.

I 47. Using a multilinear form of degree M, derive the transformation law for a contravariant vector of

degree M.

I 48. Let g denote the determinant of gij and show that
∂g

∂xk
= ggij ∂gij

∂xk
.

I 49. We have shown that for a rotation of xyz axes with respect to a set of fixed x̄ȳz̄ axes, the derivative

of a vector ~A with respect to an observer on the barred axes is given by

d ~A

dt

∣∣∣∣
f

=
d ~A

dt

∣∣∣∣
r

+ ~ω × ~A.

Introduce the operators

Df
~A =

d ~A

dt

∣∣∣∣
f

= derivative in fixed system

Dr
~A =

d ~A

dt

∣∣∣∣
r

= derivative in rotating system

(a) Show that Df
~A = (Dr + ~ω×) ~A.

(b) Consider the special case that the vector ~A is the position vector ~r. Show that Df~r = (Dr + ~ω×)~r

produces ~V

∣∣∣∣
f

= ~V

∣∣∣∣
r

+ ~ω × ~r where ~V

∣∣∣∣
f

represents the velocity of a particle relative to the fixed system

and ~V

∣∣∣∣
r

represents the velocity of a particle with respect to the rotating system of coordinates.

(c) Show that ~a

∣∣∣∣
f

= ~a

∣∣∣∣
r

+ ~ω × (~ω × ~r) where ~a

∣∣∣∣
f

represents the acceleration of a particle relative to the

fixed system and ~a

∣∣∣∣
r

represents the acceleration of a particle with respect to the rotating system.

(d) Show in the special case ~ω is a constant that

~a

∣∣∣∣
f

= 2~ω × ~V + ~ω × (~ω × ~r)

where ~V is the velocity of the particle relative to the rotating system. The term 2~ω × ~V is referred to

as the Coriolis acceleration and the term ~ω × (~ω × ~r) is referred to as the centripetal acceleration.


