§1.3 SPECIAL TENSORS

Knowing how tensors are defined and recognizing a tensor when it pops up in front of you are two
different things. Some quantities, which are tensors, frequently arise in applied problems and you should
learn to recognize these special tensors when they occur. In this section some important tensor quantities

are defined. We also consider how these special tensors can in turn be used to define other tensors.
Metric Tensor

Define *, i = 1,..., N as independent coordinates in an N dimensional orthogonal Cartesian coordinate
system. The distance squared between two points y° and 3 + dy’, i =1,...,N is defined by the
expression

ds? = dy™dy™ = (dy")? + (dy?)? + - - - + (dy™)>. (1.3.1)

Assume that the coordinates 3’ are related to a set of independent generalized coordinates 2%, i =1,..., N

by a set of transformation equations
Y =yi(zt 22, 2N), i=1,...,N. (1.3.2)

To emphasize that each y* depends upon the x coordinates we sometimes use the notation y* = y'(x), for

i =1,...,N. The differential of each coordinate can be written as
dy 7de, m=1,...,N, (1.3.3)

and consequently in the z-generalized coordinates the distance squared, found from the equation (1.3.1),

becomes a quadratic form. Substituting equation (1.3.3) into equation (1.3.1) we find

ds® = %Zij %ZJT:R dr'ds’ = g;; da'da’ (1.3.4)

where o
gij = (?)Z;i %, ij=1,...,N (1.3.5)
are called the metrices of the space defined by the coordinates z?, i = 1,..., N. Here the g;; are functions of

the z coordinates and is sometimes written as g;; = ¢;;(¢). Further, the metrices g;; are symmetric in the
indices 7 and j so that g;; = g;; for all values of i and j over the range of the indices. If we transform to
another coordinate system, say Z°, i = 1, ..., N, then the element of arc length squared is expressed in terms
of the barred coordinates and ds? = Jij dz'dz’, where 9i; = 9;;(T) is a function of the barred coordinates.

The following example demonstrates that these metrices are second order covariant tensors.
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EXAMPLE 1.3-1.  Show the metric components g¢;; are covariant tensors of the second order.

Solution: In a coordinate system z%,i = 1,..., N the element of arc length squared is
ds® = g;;dx’da? (1.3.6)
while in a coordinate system Z',i = 1,..., N the element of arc length squared is represented in the form
ds* =G, dT"dT". (1.3.7)

The element of arc length squared is to be an invariant and so we require that
T dT"dT" = g;5dx’da’ (1.3.8)

Here it is assumed that there exists a coordinate transformation of the form defined by equation (1.2.30)

together with an inverse transformation, as in equation (1.2.32), which relates the barred and unbarred

coordinates. In general, if x' = 2%(F), then for i =1,..., N we have
N oI
o’ = a;m dz™ and dod = a—;’n dz" (1.3.9)

Substituting these differentials in equation (1.3.8) gives us the result

o oz’ 0x7 _ _ ozt Ox) _
. . . S _ 0zt Ox)
For arbitrary changes in dz™ this equation implies that g,,,, = gija_—m e and consequently g;; transforms
™" O

as a second order absolute covariant tensor.

EXAMPLE 1.3-2. (Curvilinear coordinates) Consider a set of general transformation equations from
rectangular coordinates (z,y, z) to curvilinear coordinates (u, v, w). These transformation equations and the

corresponding inverse transformations are represented

p=a(wuw)  u=u(ny,?)
y =y(u,v,w) v=v(z,y,2) (1.3.10)
z = z(u, v, w). w=w(z,y,z)

b=y, 22 = v, 2 = w are the Cartesian and generalized coordinates

Here y'! =z, > =y, =2 and =
and N = 3. The intersection of the coordinate surfaces u = ¢1,v = ¢2 and w = c3 define coordinate curves
of the curvilinear coordinate system. The substitution of the given transformation equations (1.3.10) into
the position vector ¥ = z€; + y €3 + z €3 produces the position vector which is a function of the generalized
coordinates and

7= r(u,v,w) = z(u,v,w) e + y(u,v,w) e + 2(u,v,w) es



and consequently dr’ = 8_ du + ﬁ dv + 8_ dw, where
ou v ow
B=_ 0 O, 02,
Oou  Ou Ju Ju
or Ox .. Oy .. Oz s
2T v e1+%e2+8v
—» or  Or . oy . 0z ..

E:—: — R
T ow  ow el+8w e2+8w -

(1.3.11)

are tangent vectors to the coordinate curves. The element of arc length in the curvilinear coordinates is

oF oF orF  oF or  OF
ds? =di-di = 25 L qudu+ 25 2 qudv + 2 2 qud
5 rear ou 8uuu+8u 8vuv+8u 8wuw
oF OF orF  oF oF  oF
DT vdu+L 2 gvdv + 2L 2 gvdw
I T e TR i L
oF  OF or  or or or

Utilizing the summation convention, the above can be expressed in the index notation.

quantities
_oror_oror o _or o
I =50 u 2= 5, 93 =30 w
Loror o _oror_or o
ga1 = ov Ou 922 = ov Ov 923 = ov Ow
or or or or or or

931:%'% 932:%'% 933—%'%

and let ! =, 2?2 =wv, 23 =w. Then the above element of arc length can be expressed as
ds? = E'z - Ej drids? = gijda:ida:j, ,7=1,2,3

where 5 5 5
= rooor "oy . o
gij =E;-E; = i BT a‘ii %, 1, j free indices

(1.3.12)

Define the

(1.3.13)

are called the metric components of the curvilinear coordinate system. The metric components may be

thought of as the elements of a symmetric matrix, since g;; = g¢;;. In the rectangular coordinate system

x,y, z, the element of arc length squared is ds? = dx? + dy? + dz2. In this space the metric components are

gij =

O O =
O = O
_— o O
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EXAMPLE 1.3-3. (Cylindrical coordinates (7,0, z))
The transformation equations from rectangular coordinates to cylindrical coordinates can be expressed

L=y 2% =0, 2° = 2, and the

asx =rcos, y=rsinf, z=z Herey' =2,y° =y,3> =2 and =z
position vector can be expressed ¥ = 7(r, 0, z) = rcosf €; + rsinf €z + ze€3. The derivatives of this position
vector are calculated and we find

= or —~ NP = or PO ~ = or .

Ey = — =cosfe; +sinfe;, Es=— =—rsinfe; +rcosfes, E3=— = e;s.

or 00 0z
From the results in equation (1.3.13), the metric components of this space are
0
2
0

gij =

O O =
= o O

We note that since g;; = 0 when 7 # j, the coordinate system is orthogonal.

Given a set of transformations of the form found in equation (1.3.10), one can readily determine the
metric components associated with the generalized coordinates. For future reference we list several differ-
ent coordinate systems together with their metric components. Each of the listed coordinate systems are

orthogonal and so g;; = 0 for ¢ # j. The metric components of these orthogonal systems have the form

200
gij=10 h3 0
0 0 &2

and the element of arc length squared is

ds? = h3(daz')? + h3(dx?)? 4 h3(dx®)>.

1. Cartesian coordinates (z,y, z)
rT=x h1 =1

y=y hy =1
z=2z hy3 =1
The coordinate curves are formed by the intersection of the coordinate surfaces

x =Constant, y =Constant and z =Constant.



Figure 1.3-1. Cylindrical coordinates.

2. Cylindrical coordinates (r, 0, z)

r=rcosf r>0 hy=1
y=rsingd 0<60<27 ho =1
z2=2z —00 < z <00 hg =1

The coordinate curves, illustrated in the figure 1.3-1, are formed by the intersection of the coordinate

surfaces
22+ =12, Cylinders

y/x = tan@ Planes

z = Constant Planes.
3. Spherical coordinates (p, 6, ¢)
x =psinfcos¢p p>0 hi =1
y=psinfsing 0<0<nw ho=p
z = pcosf 0<op <27 hs = psinf

The coordinate curves, illustrated in the figure 1.3-2, are formed by the intersection of the coordinate

surfaces ) ) ) )
T ry +2m=p

Spheres
z? +y? =tan 6 22 Cones
y=x tan¢ Planes.

4. Parabolic cylindrical coordinates (£, 7, z)

z =& —00 << o0 hi = /€2 + 12
1
y:§(§2—n2) —00 < z< 00 ho = /€2 + 1?2

2=z n=>0 hs =1
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Figure 1.3-2. Spherical coordinates.

The coordinate curves, illustrated in the figure 1.3-3, are formed by the intersection of the coordinate

surfaces )
2 = —26%(y — %) Parabolic cylinders

2
22 =2 (y + %) Parabolic cylinders

z = Constant Planes.

Figure 1.3-3. Parabolic cylindrical coordinates in plane z = 0.

5. Parabolic coordinates (&, 7, ¢)

x = &ncos¢ £€>0 hi = /€ +n?
y=¢&nsing n>0 hy = /£2+7]2

1
225(52—722) 0<o<2m hs =¢&n



The coordinate curves, illustrated in the figure 1.3-4, are formed by the intersection of the coordinate

surfaces 2
2?4y = —2¢2(2 — %) Paraboloids
2

22 4 y% =27 (2 + %) Paraboloids

y=ux tan¢ Planes.

Figure 1.3-4. Parabolic coordinates, ¢ = 7 /4.

6. Elliptic cylindrical coordinates (&, 7, z)

x =cosh&cosn £€>0 hlzy/sinhzf—&—sinzn
y=sinhésinn 0<7n<27 hy = /sinh2£+ sin2 0

zZ=Zz —oo<z< X h3:1

The coordinate curves, illustrated in the figure 1.3-5, are formed by the intersection of the coordinate

surfaces
« Y1 m lind
+ = iptic cylinders
cosh®¢  sinh?¢ P Y
2 y?

—— =5 =1 Hyperbolic cylinders
cos?n  sin“n

z = Constant Planes.
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Figure 1.3-5. Elliptic cylindrical coordinates in the plane z = 0.

7. Elliptic coordinates (£,, ¢)

£2 2
r=+(1-7%)(2—1)cos¢p 1<E< o0 hn = &2 -1

y=+(1-1?)(&—-1)sing —-1<7<1 N /52_7]2
2:
z=¢£&n 0< ¢ <2m 1 —n?

hs =/ (1 =1?)(& = 1)

The coordinate curves, illustrated in the figure 1.3-6, are formed by the intersection of the coordinate

surfaces ) ) 9
52%—_1 + ng—_l + 2—2 =1 Prolate ellipsoid
2 2 2
;—2 — lf—n2 — 13—7;2 =1 Two-sheeted hyperboloid

y=x tan¢ Planes

8. Bipolar coordinates (u, v, z)

asinhv

2 _ ;2
r=— 0<u<?2mr hi = hj
coshv — cosu 9
. 9 a
asinu = ————
y=—9—""" —00 <V <00 (coshv — cosu)?
coshv — cosu
h2=1
z2=2z —0 < z< 00 3=



Figure 1.3-6. Elliptic coordinates ¢ = 7/4.

Figure 1.3-7. Bipolar coordinates.

The coordinate curves, illustrated in the figure 1.3-7, are formed by the intersection of the coordinate

surfaces
a2
(z —acothv)® +y* = —— Cylinders
sinh® v
P . a . ‘
"+ (y —acotu)” = — Cylinders
sin” u

z = Constant Planes.
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9. Conical coordinates (u, v, w)

uvw

r=—, ¥>vP>a®>w?, u>0 h%zl
ab 20,2 2
_u [(v?—a?)(w? - a?) hi = 2u (U2 —2w ) 3
- a? —b? (v —a?)(0* — v?)
” (?}2 N b2)(w2 N b2) h2 _ ’LLQ('UQ — u}2)
S b2 — o2 P (w? —a?)(w? - b?)
The coordinate curves, illustrated in the figure 1.3-8, are formed by the intersection of the coordinate
surfaces
2?4 y? 4 2% = Spheres
2 2 2
Y z _
" + a2 + NCRT =0, Cones
2 2 2
x Y z
E+w2—a2+w2—62:0’ Cones.

Figure 1.3-8. Conical coordinates.

10. Prolate spheroidal coordinates (u,v, @)

r = asinhusinvcosg, u >0 hQ:hé
y =asinhusinvsing, 0<v <7 hZ = a2(sinh2 u + sin? v)
z =acoshucosv, 0<¢ <27 h? = a?sinh? usin® v

The coordinate curves, illustrated in the figure 1.3-9, are formed by the intersection of the coordinate

Sllrfaces
as yh 1 I IOlate ell dS
11N sh 2 1
( lnh U,)2 (a S U;)Q (a co U;) ) pSO
z ]/‘2 y2

— — =1 Two-sheeted hyperboloid
(acosv)?  (asinv)? (asinwv)? ’ womsheeted yperborol

y = x tan ¢, Planes.



Figure 1.3-9. Prolate spheroidal coordinates

11. Oblate spheroidal coordinates (£, 7, @)

x = a cosh cosncos ¢, £E>0 h? = h3
y = acosh & cosnsin ¢, —g <n< g h% = a*(sinh? € + sin? 7))
z=uasinhésing, 0< ¢ <2m h% = a®cosh? € cos®

The coordinate curves, illustrated in the figure 1.3-10, are formed by the intersection of the coordinate

Surfa;ces
((1 COSh E) (a COSI 5)2 (a Sinh §)2 ’ O ate eHlpSOl S
T y z

=1 One-sheet h; boloid
(acosm)?  (acosn)? (asinn)? ’ HESHEC yPerbololds

y = x tan ¢, Planes.

12. Toroidal coordinates (u,v, @)

asinh v cos ¢ 2 _ 12
r=——"7— 0<u<27 hi = ha
coshv — cosu a2
asinhvsin ¢ h3 = ——
y=——"797¥—"—, —00<v< X0 (coshv — cosu)
coshv — cosu 5 . 12
asinu 52 a” sinh” v
_ e~ < 1=
z O<o<2m 37 (coshwv — cos u)?

coshv — cosu’

The coordinate curves, illustrated in the figure 1.3-11, are formed by the intersection of the coordinate

surfaces )
2
acosu a
22 492 + (z - — ) =, Spheres
sinu sin” u
2 2
cosh v a
Vi +y?—a—— | +27= —5—, Torus
sinh v sinh” v

y = x tan ¢, planes
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Figure 1.3-10. Oblate spheroidal coordinates

Figure 1.3-11. Toroidal coordinates

EXAMPLE 1.3-4. Show the Kronecker delta 5; is a mixed second order tensor.

Solution: Assume we have a coordinate transformation z° = 2*(%),i = 1,..., N of the form (1.2.30) and
possessing an inverse transformation of the form (1.2.32). Let 3;- and 5; denote the Kronecker delta in the
barred and unbarred system of coordinates. By definition the Kronecker delta is defined

{ 0, if i#j

5. =06 = D
1, if 1=

J J



Employing the chain rule we write

o™  oz™ ox' oz 0xF

= - = ——— 1.3.14
oz" ~ Ot 9T"  Ox' oz " ( )
By hypothesis, the Z*,i = 1,..., N are independent coordinates and therefore we have % = gnm and (1.3.14)
simplifies to
R T
Therefore, the Kronecker delta transforms as a mixed second order tensor.
|
Conjugate Metric Tensor
Let g denote the determinant of the matrix having the metric tensor g;5,%,5 = 1,..., N as its elements.
In our study of cofactor elements of a matrix we have shown that
cof(g17)g1k + cof(g2;)g2r + - - . + cof (gn;)gne = 903, (1.3.15)

We can use this fact to find the elements in the inverse matrix associated with the matrix having the

components g;;. The elements of this inverse matrix are

. 1
g = ;cof(gij) (1.3.16)
and are called the conjugate metric components. We examine the summation ¢/ g;;, and find:

979k = 9" 916 + 97 g + ... + 9" gy

1
=3 [cof (g1)g1k + cof (925) g2k + - - - + cof (gn;)gnk]
1 , ,
_ 2 asi] = i
= |ost] =4
The equation
97 gix = 0}, (1.3.17)

is an example where we can use the quotient law to show ¢ is a second order contravariant tensor. Because

of the symmetry of ¢¥/ and gij the equation (1.3.17) can be represented in other forms.

EXAMPLE 1.3-5. Let A; and A’ denote respectively the covariant and contravariant components of a

vector A. Show these components are related by the equations

A = gi; A (1.3.18)
Ak = giF A, (1.3.19)

where g;; and g% are the metric and conjugate metric components of the space.

7
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Solution: We multiply the equation (1.3.18) by ¢*™ (inner product) and use equation (1.3.17) to simplify
the results. This produces the equation g"™A; = ¢g""g;; A7 = 5;-”Aj = A™. Changing indices produces the
result given in equation (1.3.19). Conversely, if we start with equation (1.3.19) and multiply by gk, (inner
product) we obtain GrmAF = gkmgjkAj = 5ﬁnAj = A,,, which is another form of the equation (1.3.18) with
the indices changed.

Notice the consequences of what the equations (1.3.18) and (1.3.19) imply when we are in an orthogonal

Cartesian coordinate system where

and g% =

o = O
= o O
SO =
o = O
—_= O O

1
gij =10
0

In this special case, we have
Ay = g Al + g1oA® + g13A% = A
Ay = 921141 + 922A2 + 923143 = A?
Az = g51 A + g32A% + g334° = A%
These equations tell us that in a Cartesian coordinate system the contravariant and covariant components

are identically the same.

EXAMPLE 1.3-6. We have previously shown that if A; is a covariant tensor of rank 1 its components in
a barred system of coordinates are
Solve for the A; in terms of the A;. (i.e. find the inverse transformation).

Solution: Multiply equation (1.3.20) by daxin (inner product) and obtain

O 4 ox? 0T

A; = A
Oxm 7 ozt daxm

(1.3.21)

ozl 0z Oa)
oz’ fz™  dx™
coordinates. This reduces equation (1.3.21) to the form

In the above product we have = (5{n since 7 and ™ are assumed to be independent

A, gjm = A;00, = Ay, (1.3.22)

which is the desired inverse transformation.

This result can be obtained in another way. Examine the transformation equation (1.3.20) and ask the
question, “When we have two coordinate systems, say a barred and an unbarred system, does it matter which
system we call the barred system?” With some thought it should be obvious that it doesn’t matter which

system you label as the barred system. Therefore, we can interchange the barred and unbarred symbols in

— 0

equation (1.3.20) and obtain the result A; = Aj% which is the same form as equation (1.3.22), but with
x

a different set of indices.
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Associated Tensors

Associated tensors can be constructed by taking the inner product of known tensors with either the

metric or conjugate metric tensor.

Definition: (Associated tensor) Any tensor constructed by multiplying (inner
product) a given tensor with the metric or conjugate metric tensor is called an

associated tensor.

Associated tensors are different ways of representing a tensor. The multiplication of a tensor by the
metric or conjugate metric tensor has the effect of lowering or raising indices. For example the covariant
and contravariant components of a vector are different representations of the same vector in different forms.

These forms are associated with one another by way of the metric and conjugate metric tensor and
giin = Aj gijAj = Az

EXAMPLE 1.3-7. The following are some examples of associated tensors.

Al =gl A Aj =g A

Z’lk _ gmiAijk Alﬂflf _ gminjk

A = g™k gnd A, Amjk = gim A’y

Sometimes ‘dots’are used as indices in order to represent the location of the index that was raised or lowered.
If a tensor is symmetric, the position of the index is immaterial and so a dot is not needed. For example, if
A is a symmetric tensor, then it is easy to show that A% and A;" are equal and therefore can be written
as A7 without confusion.

Higher order tensors are similarly related. For example, if we find a fourth order covariant tensor 7T;;xm

we can then construct the fourth order contravariant tensor 779"% from the relation
TP = g7 g% " g* " T .

This fourth order tensor can also be expressed as a mixed tensor. Some mixed tensors associated with

the given fourth order covariant tensor are:

P _pio, . Pq  _ _qjP
T.jkm*g lekma T..km*g T.jkm'
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Riemann Space Vi

A Riemannian space Vi is said to exist if the element of arc length squared has the form
ds® = g;;da’dx? (1.3.23)

where the metrices g;; = g5 (x',22,...,2") are continuous functions of the coordinates and are different
from constants. In the special case g;; = d;; the Riemannian space Vi reduces to a Euclidean space Ex.
The element of arc length squared defined by equation (1.3.23) is called the Riemannian metric and any
geometry which results by using this metric is called a Riemannian geometry. A space Vj is called flat if
it is possible to find a coordinate transformation where the element of arclength squared is ds? = ¢;(dz?)?

where each ¢; is either +1 or —1. A space which is not flat is called curved.

Geometry in Vy

Given two vectors A = Aiﬁi and B = B’ Ej, then their dot product can be represented
E~ E = AzB]E_Tl . Ej = giinBj = Aij = AiBi = gijAJ‘Bi = |A’||.§| cosf. (1324)

Consequently, in an N dimensional Riemannian space Vi the dot or inner product of two vectors A and B
is defined:
giinBj = Aij = AZ.Bz = gijAjBi = ABcos6. (1325)

In this definition A is the magnitude of the vector A, the quantity B is the magnitude of the vector B; and
6 is the angle between the vectors when their origins are made to coincide. In the special case that 8 = 90°
we have g;; A*B7 = 0 as the condition that must be satisfied in order that the given vectors A* and B’ are
orthogonal to one another. Consider also the special case of equation (1.3.25) when A® = B? and § = 0. In

this case the equations (1.3.25) inform us that
g ALA = ATA; = gi, ATA" = (A)2. (1.3.26)

From this equation one can determine the magnitude of the vector A’. The magnitudes A and B can be

written 4 = (ginA’A™)2 and B = (gququ)% and so we can express equation (1.3.24) in the form

9i;A'BI
(gmnAmAn)% (gququ)% .

cosf = (1.3.27)

An import application of the above concepts arises in the dynamics of rigid body motion. Note that if a

dA®

< 1s different from zero, then the vectors A" and

vector A’ has constant magnitude and the magnitude of

dA®
dt

vectors €1,€2 and €3 on a rotating system of Cartesian axes. We have for constants ¢;, i = 1,6 that

must be orthogonal to one another due to the fact that giin% = 0. As an example, consider the unit

de; PRI
—— = Ci€ez 1+ (2€e3
dt

dt

N N des . N
=c3e3tcyge; W:C5el+0692

because the derivative of any €; (¢ fixed) constant vector must lie in a plane containing the vectors €; and

€, (j#1i,k#iand j#k), since any vector in this plane must be perpendicular to €;.



The above definition of a dot product in Vjy can be used to define unit vectors in V.

Definition: (Unit vector) Whenever the magnitude of a vec-
tor A’ is unity, the vector is called a unit vector. In this case we
have

gij ATAT = 1. (1.3.28)

EXAMPLE 1.3-8. (Unit vectors)

In Vi the element of arc length squared is expressed ds? = Gij dz'dz’ which can be expressed in the

dx® da’ . . dz* . . .
form 1 = g;; Is ds This equation states that the vector e i=1,..., N is a unit vector. One application
s ds S
of this equation is to consider a particle moving along a curve in Vjy which is described by the parametric
equations x* = z'(t), for i = 1,..., N. The vector V= dd—g’f, i=1,..., N represents a velocity vector of the

particle. By chain rule differentiation we have

dzt B dxt ds dzt

Vi ~wsa Vs

(1.3.29)

where V = % is the scalar speed of the particle and % is a unit tangent vector to the curve. The equation

(1.3.29) shows that the velocity is directed along the tangent to the curve and has a magnitude V. That is

ds)? 2 ivsj
% Z(V) :gijVV.

EXAMPLE 1.3-9. (Curvilinear coordinates)
Find an expression for the cosine of the angles between the coordinate curves associated with the

transformation equations

z = z(u,v,w), y = y(u,v,w), z = z(u,v,w).
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f‘((:1"‘1’2, s WV

V(X,Y,Z)=

r(u .C2,€3) W(X,y,z) =C3

Figure 1.3-12. Angles between curvilinear coordinates.

Solution: Let y! = z, 42 = v, y® = z and 2! = u, 22 = v, 2® = w denote the Cartesian and curvilinear
coordinates respectively. With reference to the figure 1.3-12 we can interpret the intersection of the surfaces
v = ¢ and w = c3 as the curve 7 = 7(u, c2, ¢3) which is a function of the parameter v. By moving only along

or
this curve we have dr’ = 90 du and consequently
u

or or
ds® = dF - di = — - — dudu = g11(dz")?,

Ou Ou gu(de’)

or )
1= dr dr dx!
s ds M \as )
This equation shows that the vector % = \/%T is a unit vector along this curve. This tangent vector can
_ 1

be represented by £{;) = \/TT(S{'

The curve which is defined by the intersection of the surfaces u = ¢; and w = c3 has the unit tangent

vector ¢y = \/%5’2" . Similarly, the curve which is defined as the intersection of the surfaces u = ¢; and

v = ¢ has the unit tangent vector th) = \/%5};. The cosine of the angle 612, which is the angle between the

unit vectors £(;, and {5, is obtained from the result of equation (1.3.25). We find

Pl =g Logp Lo 92
SN pq\/gn 1\/922 2 VvV 911+/922

For 613 the angle between the directions t’(i) and t’@ we find

cos 012 = gpgt

g13
\/911\/933'

Finally, for 6235 the angle between the directions ﬂ@ and tés) we find

cos i3 =

g23
Vv 9224/933

When 613 = 012 = 023 = 90°, we have gi12 = g13 = g23 = 0 and the coordinate curves which make up the

cos 3 =

curvilinear coordinate system are orthogonal to one another.

In an orthogonal coordinate system we adopt the notation

g1 = (h)?, 922 = (h2)?, g33 = (h3)? and gi; = 0,1 #j.



Epsilon Permutation Symbol

Associated with the e—permutation symbols there are the epsilon permutation symbols defined by the

relations
- (1.3.30)
V9

€ijk = \/9€ijk and ek
where g is the determinant of the metrices g;;.

It can be demonstrated that the e;j; permutation symbol is a relative tensor of weight —1 whereas the
€, permutation symbol is an absolute tensor. Similarly, the e¥* permutation symbol is a relative tensor of
ik permutation symbol is an absolute tensor.
EXAMPLE 1.3-10. (¢ permutation symbol)

Show that e;;i is a relative tensor of weight —1 and the corresponding e;;, permutation symbol is an

weight +1 and the corresponding ¢

absolute tensor.

Solution: Examine the Jacobian
J E — 0z2 0z2 0z2
T oz! 0z2 033

and make the substitution )
i 0 o123
a‘j - @7 ,]=1,4,9.

From the definition of a determinant we may write
catalak =T z 1.3.31
CijkQpyAnAp = (f)emnp- ( 3.3 )
By definition, €ynp = emnp in all coordinate systems and hence equation (1.3.31) can be expressed in the
form , Sk
z -1 ox' 0z’ Ox _
@] e g g = P (1:3.32)
which demonstrates that e;j, transforms as a relative tensor of weight —1.

We have previously shown the metric tensor g;; is a second order covariant tensor and transforms

ox™ Oz"
according to the rule g;; = gmn%%. Taking the determinant of this result we find
T 0T
oz™ | x.12
G=17. =gl | Z=| =g [sZ 1.3.
7 = [5ij| = lgmal | s | =9[I3)] (1.3.33)

where g is the determinant of (g;;) and g is the determinant of (g,;). This result demonstrates that g is a

scalar invariant of weight +2. Taking the square root of this result we find that

Vi= \/g,](%), (1.3.34)

Consequently, we call /g a scalar invariant of weight +1. Now multiply both sides of equation (1.3.32) by
v/ and use (1.3.34) to verify the relation

This equation demonstrates that the quantity €;;, = /g e;jx transforms like an absolute tensor.
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Figure 1.3-14. Translation followed by rotation of axes

In a similar manner one can show e* is a relative tensor of weight +1 and €% = %e” k is an absolute

tensor. This is left as an exercise.
|
Another exercise found at the end of this section is to show that a generalization of the e — § identity
is the epsilon identity
9" €ipt€jrs = GprGis — psGir- (1.3.36)

Cartesian Tensors

Consider the motion of a rigid rod in two dimensions. No matter how complicated the movement of
the rod is we can describe the motion as a translation followed by a rotation. Consider the rigid rod AB

illustrated in the figure 1.3-13.

A Al

Figure 1.3-13. Motion of rigid rod

In this figure there is a before and after picture of the rod’s position. By moving the point B to B’ we

have a translation. This is then followed by a rotation holding B fixed.
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Figure 1.3-15. Rotation of axes

A similar situation exists in three dimensions. Consider two sets of Cartesian axes, say a barred and
unbarred system as illustrated in the figure 1.3-14. Let us translate the origin 0 to 0 and then rotate the
(x,y,2) axes until they coincide with the (Z,7,%) axes. We consider first the rotation of axes when the
origins 0 and 0 coincide as the translational distance can be represented by a vector b¥, k = 1,2,3. When
the origin 0 is translated to 0 we have the situation illustrated in the figure 1.3-15, where the barred axes
can be thought of as a transformation due to rotation.

Let

F=x€ +yes +z€3 (1.3.37)

denote the position vector of a variable point P with coordinates (z,y, z) with respect to the origin 0 and the
unit vectors €;, €z, €3. This same point, when referenced with respect to the origin 0 and the unit vectors
€1, €2, €3, has the representation

¥ = Eél +gég +Eé3. (1338)
By considering the projections of ¥ upon the barred and unbarred axes we can construct the transformation

equations relating the barred and unbarred axes. We calculate the projections of 7 onto the =,y and z axes

and find:

P8 =r=7(€ - ¢)+7(e- e)+z(es &)
78 =y="T(e - &) +y(er &) +2z(e;- €) (1.3.39)
7-83=z2=1(€ - 63)+7(6- &) +Z(e3- ).

We also calculate the projection of #* onto the 7,7,z axes and find:
F-e=T=ua(6 -6)+y( &)+ z2(e- &)
Fe=y=u(e - 6 & &) +2(e;- &) (1.3.40)
7F-e3=Z=ux(€ - €3)+y(ey- €3)+ z(e3- €3).

By introducing the notation (y1,y2,y3) = (z,y, 2) (T1,72,73) = (T,7,Z) and defining 6;; as the angle

between the unit vectors €; and €;, we can represent the above transformation equations in a more concise
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form. We observe that the direction cosines can be written as

611 = 61 . él = COS 911 612 = 61 . EQ = COS 912 613 = 61 . 53 = COS 913
621 = 62 . él = COS 921 622 = 62 . EQ = COS 922 623 = 62 . 53 = COS 923 (1.3.41)
631 = 63 - €] = COos 931 632 = 63 - €3 = COS 932 633 = 63 . 53 = COS 933

which enables us to write the equations (1.3.39) and (1.3.40) in the form
Yi = éijﬂj and ?z = fjiyj. (1.3.42)

Using the index notation we represent the unit vectors as:

e ~

e =/lpe, or 8 =4L,%8 (1.3.43)
where £, are the direction cosines. In both the barred and unbarred system the unit vectors are orthogonal

and consequently we must have the dot products

€ € =20, and €, €, =0mn (1.3.44)
where 6;; is the Kronecker delta. Substituting equation (1.3.43) into equation (1.3.44) we find the direction

cosines ¢;; must satisfy the relations:

€, €5 = Zpr €y - gms €en = eprgms €y ey = Zprgms(spm = gmrgms = 57’5

~

and €r - €5 = erm [ gsn e, = grmesn €y - €y = grmgsnémn = ermesm = 57"3-

The relations
Lonrlms = Ors and Lrmlsm = Ors, (1.3.45)

with summation index m, are important relations which are satisfied by the direction cosines associated with
a rotation of axes.

Combining the rotation and translation equations we find

NN U, (1.3.46)
rotation translation

We multiply this equation by ¢;;, and make use of the relations (1.3.45) to find the inverse transformation
U = lin(yi — bi). (1.3.47)

These transformations are called linear or affine transformations.
Consider the T; axes as fixed, while the x; axes are rotating with respect to the T; axes where both sets

of axes have a common origin. Let A = A'@; denote a vector fixed in and rotating with the x; axes. We

the derivatives of A with respect to the fixed (f) and rotating (r) axes. We can

dA dA
denote by —‘ and —
dt |, dt

T



, , dA dA" de; de; . o
write, with respect to the fixed axes, that —| = ——@¢; + A°—". Note that — is the derivative of a
dt f dt dt dt
vector with constant magnitude. Therefore there exists constants w;, i = 1,...,6 such that
dey e & G e & 48 e e
— =uw —w — =w —-w — =uw —w
7 3 €3 28 1€3 1€ — 5 €1 6 €2

i.e. see page 80. From the dot product €; - €@ = 0 we obtain by differentiation €; - dd—% + dd—% ey =0
which implies wy = ws. Similarly, from the dot products €; - €3 and €, - €3 we obtain by differentiation the
additional relations ws = w9 and wg = wi. The derivative of A with respect to the fixed axes can now be
represented

% ; = dd—él@i + (w2As —wsAs) € + (w3Ar —wiAs) € + (w1 Ay —wrAy)es = % i +3xA

where & = w; €; is called an angular velocity vector of the rotating system. The term & x A represents the

dA? . .
—| = —— e, represents the derivative with
dt |, dt

velocity of the rotating system relative to the fixed system and
respect to the rotating system.

Employing the special transformation equations (1.3.46) let us examine how tensor quantities transform
when subjected to a translation and rotation of axes. These are our special transformation laws for Cartesian
tensors. We examine only the transformation laws for first and second order Cartesian tensor as higher order
transformation laws are easily discerned. We have previously shown that in general the first and second order

tensor quantities satisfy the transformation laws:

A, = Ajg—;z (1.3.48)
A= Ajg_zj- (1.3.49)
A" = A”?—J% (1.3.50)
A = Aij ;;’; % (1.3.51)
AT = Al ay@ 9 (1.3.52)

For the special case of Cartesian tensors we assume that y; and y;, ¢ = 1,2, 3 are linearly independent. We
differentiate the equations (1.3.46) and (1.3.47) and find

Oyi ’ Jy;

_, 9% k. 9y
oYy, Y Oy,

=Vip— = Lip.0imn = k-
OYm kaym ¥ k

= Zijéjk = Zika and

Substituting these derivatives into the transformation equations (1.3.48) through (1.3.52) we produce the

transformation equations

A = Al
A = Aty
A = Al
Apn = Aijlimlin
A = Al .
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v(x,y,2)=2 E
E'Z
E1 f;(clzvv 9c3)
=1
- E w(x,v,z)—=¢€
I'(u,('zf,c_?’) ( 'V, ) 3

Figure 1.3-16. Transformation to curvilinear coordinates

These are the transformation laws when moving from one orthogonal system to another. In this case the
direction cosines ¢;,,, are constants and satisfy the relations given in equation (1.3.45). The transformation
laws for higher ordered tensors are similar in nature to those given above.

In the unbarred system (y1,y2,ys) the metric tensor and conjugate metric tensor are:
g9ij =05  and  g" =4y
where §;; is the Kronecker delta. In the barred system of coordinates, which is also orthogonal, we have

= 8ym, 8ym,
90 oy, oy,

From the orthogonality relations (1.3.45) we find
Gij = lmilmj = 05 and g7 =4y

We examine the associated tensors

Al = gijAj Ai = gijAj
AV = gimgjnAmn Amn = gmigninj

and find that the contravariant and covariant components are identical to one another. This holds also in
the barred system of coordinates. Also note that these special circumstances allow the representation of
contractions using subscript quantities only. This type of a contraction is not allowed for general tensors. It
is left as an exercise to try a contraction on a general tensor using only subscripts to see what happens. Note

that such a contraction does not produce a tensor. These special situations are considered in the exercises.

Physical Components

We have previously shown an arbitrary vector A can be represented in many forms depending upon
the coordinate system and basis vectors selected. For example, consider the figure 1.3-16 which illustrates a

Cartesian coordinate system and a curvilinear coordinate system.
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Figure 1.3-17. Physical components

In the Cartesian coordinate system we can represent a vector A as
A= Az e +Ay62 + A, e3

where (€1, €2, €3) are the basis vectors. Consider a coordinate transformation to a more general coordinate

system, say (xl, xQ, x?’). The vector A can be represented with contravariant components as
A= A'E, + A’Ey + AE; (1.3.53)

with respect to the tangential basis vectors (El, Eg, Eg) Alternatively, the same vector A can be represented
in the form
A= A E' + AyE? + A3E°® (1.3.54)

having covariant components with respect to the gradient basis vectors (El, EQ, 53) These equations are
just different ways of representing the same vector. In the above representations the basis vectors need not
be orthogonal and they need not be unit vectors. In general, the physical dimensions of the components A°
and A; are not the same.
The physical components of the vector A in a direction is defined as the projection of A upon a unit
vector in the desired direction. For example, the physical component of A in the direction E; is
it A

. 7 = ﬁ = projection of A on Ej. (1.3.58)
1 1

Similarly, the physical component of A in the direction E is

5 A L
A- @ = @ = projection of A on E*. (1.3.59)

EXAMPLE 1.3-11. (Physical components) Let «, 3, denote nonzero positive constants such that the

product relation ary = 1 is satisfied. Consider the nonorthogonal basis vectors

—

E, =aey, Ey = e +yey, Es =e;

illustrated in the figure 1.3-17.
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It is readily verified that the reciprocal basis is
E' =~@, — 6., E? =@, E® = 8&;.
Consider the problem of representing the vector A= Az €1 + Ay €, in the contravariant vector form
A= A'E, + A’E, or tensor form Al i=1,2.
This vector has the contravariant components
A'= A E'=~4A, - BA, and A?=A.E?=aA,.
Alternatively, this same vector can be represented as the covariant vector
A= A E' + A,E® which has the tensor form Ay i =1,2.
The covariant components are found from the relations

A = A-F = aA, Ay = A-Ep = BA, + 74,

The physical components of A in the directions E' and E? are found to be:

- B A' NA, - BA,

it £ — A(1)
[EY B R+
2 2

i _A :O‘Ay:Ay:A(z),
[E?| B2«

Note that these same results are obtained from the dot product relations using either form of the vector A.

For example, we can write

- E'' A(E'-E")+ Ay(E?-EY)

A —— = - = A(1)
[E] |E]
2 ol | 12 2 | 12
and A L?, = Al B ):',_AQ(E E) = A(2).
| E2] 2

In general, the physical components of a vector A in a direction of a unit vector A’ is the generalized

dot product in V. This dot product is an invariant and can be expressed

giin)\j = A')\; = A;\" = projection of A in direction of \*
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Physical Components For Orthogonal Coordinates

In orthogonal coordinates observe the element of arc length squared in V3 is
ds® = gijdx'da’ = (h1)?(dz")? + (hg)?(dz?)? + (h3)*(dz®)?

where
(hy)? 0 0
gj=1 0 (h2)> 0 |. (1.3.60)
0 0 (h3)?

In this case the curvilinear coordinates are orthogonal and
h%i) =g@i)(i) ¢ not summed and g;; =0, i # j.

At an arbitrary point in this coordinate system we take A’,i = 1,2,3 as a unit vector in the direction
of the coordinate z'. We then obtain

M:%i A2
S

This is a unit vector since
1= g AN = guA'A = hE(A1)?

or \! = h% Here the curvilinear coordinate system is orthogonal and in this case the physical component
of a vector A?, in the direction 2%, is the projection of A* on A* in V5. The projection in the z' direction is

determined from

Am:%mv:m&x:ﬁm%:mm.
1

Similarly, we choose unit vectors u’ and v, i = 1,2,3 in the 22 and 2 directions. These unit vectors

can be represented

pt =0, 12 :C;_J:Q:hi’ p® =0
3
vl =0 2 ? ? V3 :di = i
’ ve =0, ds hs

and the physical components of the vector A’ in these directions are calculated as
A(2) = heA? and  A(3) = h3 A3,

In summary, we can say that in an orthogonal coordinate system the physical components of a contravariant

tensor of order one can be determined from the equations
A(i) = h(z‘)A(i) = ‘/g(i)(i)A(i), 1 =1,20r3 no summation on i,

which is a short hand notation for the physical components (h1 A, ho A%, h3A®). In an orthogonal coordinate
system the nonzero conjugate metric components are

1
9D

g(i)(i) = 1 =1,2, or3 no summation on i.
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These components are needed to calculate the physical components associated with a covariant tensor of

order one. For example, in the x'—direction, we have the covariant components
1 2 1
/\1 2911/\ :hlh_:h17 )\2207 /\320
1

and consequently the projection in V3 can be represented

o o . 1 A
Gi; AN = gi; ALgT™ N = Aj g7 A = At dagtt = Aﬂhﬁ = h—l

1 1
In a similar manner we calculate the relations

_A2
=

A(2) =

and A(3)

for the other physical components in the directions 2 and 3. These physical components can be represented

in the short hand notation

VAo _ _Ae

At 1=1,20r3 no summation on %.

hiy  VIGHG
In an orthogonal coordinate system the physical components associated with both the contravariant and

covariant components are the same. To show this we note that when A’g;; = A; is summed on i we obtain
Algy;+ APgyj + APgs; = Aj.
Since g;; = 0 for ¢ # j this equation reduces to
A(i)g(i)(i) = A(;), 1inot summed.

Another form for this equation is

A

A(i) = AW 90y () = i not summed,

2)(

which demonstrates that the physical components associated with the contravariant and covariant compo-
nents are identical.

NOTATION The physical components are sometimes expressed by symbols with subscripts which represent
the coordinate curve along which the projection is taken. For example, let H* denote the contravariant
components of a first order tensor. The following are some examples of the representation of the physical

components of H® in various coordinate systems:

orthogonal coordinate tensor physical
coordinates system components components
general (z1, 22, 23) H! H(1),H(2),H(3)
rectangular (z,y, 2) H H, H, H,
cylindrical (r,0,z) H H,. Hy H,
spherical (p,0,0) H? H, Hy,Hy
general (u, v, w) Hi H,, H,, H,



Higher Order Tensors

The physical components associated with higher ordered tensors are defined by projections in Viy just
like the case with first order tensors. For an nth ordered tensor Tj; . we can select n unit vectors /\i7 ui, ceey v
and form the inner product (projection)

Tij,.,kAiMj . l/k.

When projecting the tensor components onto the coordinate curves, there are N choices for each of the unit
vectors. This produces N™ physical components.

The above inner product represents the physical component of the tensor T;;.. 5 along the directions of
the unit vectors A%, u?, ..., v%. The selected unit vectors may or may not be orthogonal. In the cases where
the selected unit vectors are all orthogonal to one another, the calculation of the physical components is
greatly simplified. By relabeling the unit vectors Azm), 2n), ce, Azp) where (m), (n), ..., (p) represent one of

the N directions, the physical components of a general nth order tensor is represented
. , A

EXAMPLE 1.3-12. (Physical components)
In an orthogonal curvilinear coordinate system V3 with metric g;;, 7,7 = 1,2, 3, find the physical com-
ponents of
(i) the second order tensor A;;. (ii) the second order tensor A¥. (iii) the second order tensor A;
Solution: The physical components of A,,,, m,n = 1,2,3 along the directions of two unit vectors A* and

! is defined as the inner product in V3. These physical components can be expressed

where the subscripts (7) and (j) represent one of the coordinate directions. Dropping the subscripts () and
(j), we make the observation that in an orthogonal curvilinear coordinate system there are three choices for
the direction of the unit vector A\* and also three choices for the direction of the unit vector y’. These three
choices represent the directions along the z', 2% or 2% coordinate curves which emanate from a point of the
curvilinear coordinate system. This produces a total of nine possible physical components associated with
the tensor A,,y,.

For example, we can obtain the components of the unit vector A\*,i = 1,2, 3 in the 2! direction directly

from an examination of the element of arc length squared
ds® = (h1)?(dz")? + (ha)?(dz?)? + (h3)?(dz®)?.

By setting dz? = dz® = 0, we find
dx! 1
ds - hl
This is the vector Aél),i = 1,2,3. Similarly, if we choose to select the unit vector A\*,i = 1,2,3 in the 22

direction, we set dz' = dx? = 0 in the element of arc length squared and find the components

dz? 1
A =0 N="=_ A2 =0.
’ ds hg,
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This is the vector )\22),1' =1,2,3. Finally, if we select \?,i = 1,2, 3 in the 23 direction, we set dz' = daz? = 0

in the element of arc length squared and determine the unit vector

- dz? 1
2 3
A 07 ds hg

A =0,
This is the vector )\23),1' = 1,2, 3. Similarly, the unit vector x’ can be selected as one of the above three
directions. Examining all nine possible combinations for selecting the unit vectors, we calculate the physical

components in an orthogonal coordinate system as:

A(11) = }ixl A(12) = }iz A(13) = ;:233
A(21) = }ii; A(22) = éi; A(23) = ;:233

A A As;
A(31) = h;]’; A(32) = h;]’; A(33) = h;]’;

These results can be written in the more compact form

Ay
A(Z]): (1) (4)

no summation on ¢ or j .
heiyh)

(1.3.61)

For mixed tensors we have

A; _ gzmAmj _ gﬂAlj + gi2A2j +gi3A3j~

(1.3.62)

From the fact g% = 0 for i # j, together with the physical components from equation (1.3.61), the equation
(1.3.62) reduces to

AD g0 g A

" =9 06 = 327 hahe) Alig)

(@)

no summation on ¢ and ¢,j = 1,2 or 3.

This can also be written in the form

R
A(ij) = A —©

no summation on ¢ or j.
W hj) ’

(1.3.63)

Hence, the physical components associated with the mixed tensor A; in an orthogonal coordinate system

can be expressed as

o 1
A(L) = 4 A(12) = AL a3y = atln
h 2h2 3h3
A(21) = 4222 _ 42 h
h1 A(22) = A3 A(23) = A§_2
_ 2383 — 38

For second order contravariant tensors we may write

Aijgjm = Azn = Ailglm + Ai292m + Awg&m



We use the fact g;; = 0 for ¢ # j together with the physical components from equation (1.3.63) to reduce the
above equation to the form AEZ) = A®m) 9(m)(m) no summation on m . In terms of physical components

we have

him)
h

A(im) = A(i)(m)h(2 or A(im) = A(i)(m)h(i)h(m). no summation i,m =1,2,3 (1.3.64)

m)

Examining the results from equation (1.3.64) we find that the physical components associated with the

contravariant tensor A%, in an orthogonal coordinate system, can be written as:

A1) = AMhyhy A(12) = A2hyhy A(13) = A¥hyhs
A(21) = A*' hyhy A(22) = A% hyhy A(23) = AP hahs
A(31) = A3 hghy A(32) = A% hghy A(33) = A®3h3hs.

Physical Components in General

In an orthogonal curvilinear coordinate system, the physical components associated with the nth order

tensor Tj;.. )1 along the curvilinear coordinate directions can be represented:

y To@)... 0w
T(ij...kl)=
( : h@yhi) - - hwyhay

no summations.

These physical components can be related to the various tensors associated with 753;.. ;. For example, in
an orthogonal coordinate system, the physical components associated with the mixed tensor bejk’ln can be

expressed as:

Tj. mn.. k)= 7O IO - )

200 B T no summations. (1.3.65)

EXAMPLE 1.3-13. (Physical components) Let z° = z%(t),7 = 1,2,3 denote the position vector of a
particle which moves as a function of time ¢. Assume there exists a coordinate transformation 7' = 7*(x), for
1 =1,2,3, of the form given by equations (1.2.33). The position of the particle when referenced with respect
to the barred system of coordinates can be found by substitution. The generalized velocity of the particle
in the unbarred system is a vector with components

dz’

viZE,izl,Q,B.

The generalized velocity components of the same particle in the barred system is obtained from the chain

rule. We find this velocity is represented by

w_owa _ow
dt 0w dt | 0w -

—1

This equation implies that the contravariant quantities

del dz? dz?
1 2 3\
(U’U’U)_(dt’ dt’ dt)
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are tensor quantities. These quantities are called the components of the generalized velocity. The coordinates
x', 22, 23 are generalized coordinates. This means we can select any set of three independent variables for
the representation of the motion. The variables selected might not have the same dimensions. For example,
in cylindrical coordinates we let (z! = r, 2% = 0,23 = 2). Here ! and 23 have dimensions of distance but 2

has dimensions of angular displacement. The generalized velocities are

“at @ U T ae @ U T A dt

ol det  dr o da?  db 5 da®  dz

Here v' and v® have units of length divided by time while v? has the units of angular velocity or angular
change divided by time. Clearly, these dimensions are not all the same. Let us examine the physical
components of the generalized velocities. We find in cylindrical coordinates hy = 1, ho = r, h3 = 1 and the
physical components of the velocity have the forms:

v =v(l) =v'hy = — vg = v(2) = v’hy = r— v, = v(3) = v’hy = dt
Now the physical components of the velocity all have the same units of length divided by time.

Additional examples of the use of physical components are considered later. For the time being, just
remember that when tensor equations are derived, the equations are valid in any generalized coordinate
system. In particular, we are interested in the representation of physical laws which are to be invariant and
independent of the coordinate system used to represent these laws. Once a tensor equation is derived, we
can chose any type of generalized coordinates and expand the tensor equations. Before using any expanded
tensor equations we must replace all the tensor components by their corresponding physical components in
order that the equations are dimensionally homogeneous. It is these expanded equations, expressed in terms

of the physical components, which are used to solve applied problems.

Tensors and Multilinear Forms

Tensors can be thought of as being created by multilinear forms defined on some vector space V. Let
us define on a vector space V' a linear form, a bilinear form and a general multilinear form. We can then

illustrate how tensors are created from these forms.

Definition: (Linear form) Let V denote a vector space which
contains vectors &, 1, T2, . ... A linear form in & is a scalar function
©(Z) having a single vector argument & which satisfies the linearity

properties:

() (71 + T2) = p(T1) + p(T2)

(1.3.66)
(i)  p(pZ1) = pp(zs)

for all arbitrary vectors Z1,Zs in V and all real numbers p.




An example of a linear form is the dot product relation
o(@)=A-& (1.3.67)

where A is a constant vector and 7 is an arbitrary vector belonging to the vector space V.
Note that a linear form in Z can be expressed in terms of the components of the vector  and the base

vectors (€1, €z, €3) used to represent . To show this, we write the vector Z in the component form

I=2a"e; :$161+$262+$363,

where 2%,i = 1,2, 3 are the components of & with respect to the basis vectors (€;, €, €3). By the linearity
property of ¢ we can write

o(Z) = p(z' 8;) = (' & + 228, + 2° &)
181) 4+ (a2 8y) + p(z® 83)

@)

p(x
=z'p(81) +2?p(€) + 2°p( &) = 2" p(&))

Thus we can write ¢(¥) = z'¢(€;) and by defining the quantity p(€;) = a; as a tensor we obtain (%) = z’a;.

Note that if we change basis from (€1, €2, €3) to (El, E,, E;) then the components of Z also must change.

Letting ' denote the components of # with respect to the new basis, we would have

—

F=TE; and o) =@@E;) =T'o(E;).

The linear form ¢ defines a new tensor @; = @(E;) so that ¢(Z) = T'a;. Whenever there is a definite relation

between the basis vectors (€1, €2, €3) and (El, Es, Eg), say,

o A
Ei = % €;,
then there exists a definite relation between the tensors a; and @;. This relation is
. oxd ord . O’
a; = E;) = — €5 ) = —— €e;) = —a;.
7 80( 7/) 50(851 ]) 851 SD( ]) 8fz J

This is the transformation law for an absolute covariant tensor of rank or order one.

The above idea is now extended to higher order tensors.

Definition: ( Bilinear form) A bilinear form in # and ¢ is a
scalar function ¢(Z, %) with two vector arguments, which satisfies

the linearity properties:

(1) @(T1 + Ta,91) = o(T1, 41) + @(T2, 71)
(i) o(Z1, 71 +i2) = o(@1,71) + @(T1, 2
) o o (1.3.68)
(i) o(pa, 71) = we(Z1, §1)
(iv) (@1, pii) = pe(F1, 41)

for arbitrary vectors ¥1, Z2, 41, o in the vector space V and for all

real numbers p.
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Note in the definition of a bilinear form that the scalar function ¢ is linear in both the arguments & and

7. An example of a bilinear form is the dot product relation
p(@5) =& § (1.3.60)

where both Z and ¥ belong to the same vector space V.

The definition of a bilinear form suggests how multilinear forms can be defined.

Definition: (Multilinear forms) A multilinear form of degree M or a M degree

linear form in the vector arguments

is a scalar function

of M vector arguments which satisfies the property that it is a linear form in each of its

arguments. That is, ¢ must satisfy for each j = 1,2,..., M the properties:

(Z) Lp(fl,...,fjl -I—fjg,...fM) = (p(fl,...,fjl,...,f]\/[) -I—go(fl,...,fjg,...,fM)
(ZZ) go(fl,...,ufj,...,fM) :/ch(fl,...,fj,...,fM)
(1.3.70)
for all arbitrary vectors Z1, ..., Zs in the vector space V and all real numbers p.

An example of a third degree multilinear form or trilinear form is the triple scalar product
o(Z,9,2) =7 (¢ X 2). (1.3.71)
Note that multilinear forms are independent of the coordinate system selected and depend only upon the

vector arguments. In a three dimensional vector space we select the basis vectors (€, €2, €3) and represent

—

all vectors with respect to this basis set. For example, if Z, ¥, 7 are three vectors we can represent these

vectors in the component forms
Z=1za'e;, j=yv'e,, 7 =28, (1.3.72)

where we have employed the summation convention on the repeated indices 4, j and k. Substituting equations

(1.3.72) into equation (1.3.71) we obtain
o(z'e;,yi ey, 2R ey) = 2yl 2P o(e;, €5, @), (1.3.73)
since ¢ is linear in all its arguments. By defining the tensor quantity

p(e;, e, ) = ek (1.3.74)



(See exercise 1.1, problem 15) the trilinear form, given by equation (1.3.71), with vectors from equations
(1.3.72), can be expressed as
o(Z,7,2) = eijna’y’2", 4,5,k =1,2,3. (1.3.75)
The coeflicients e;;, of the trilinear form is called a third order tensor. It is the familiar permutation symbol
considered earlier.
In a multilinear form of degree M, ¢(Z,¥,...,Z), the M arguments can be represented in a component
form with respect to a set of basis vectors (€, €2, €3). Let these vectors have components 2%, y, 2,7 = 1,2, 3

with respect to the selected basis vectors. We then can write
Z=1z'e,, 7=1yv'8,, 7=:F8e;.
Substituting these vectors into the M degree multilinear form produces
oz’ eyl e, ..., 2 e) =yl - 2R, 8y, ..., ). (1.3.76)
Consequently, the multilinear form defines a set of coefficients
aij..k =¢(€, €j,..., €) (1.3.77)

which are referred to as the components of a tensor of order M. The tensor is thus created by the multilinear
form and has M indices if ¢ is of degree M.
Note that if we change to a different set of basis vectors, say, (El, Eg, E3) the multilinear form defines
a new tensor
@ij..x = p(Ei, Ej, ..., Ey). (1.3.78)
This new tensor has a bar over it to distinguish it from the previous tensor. A definite relation exists between
the new and old basis vectors and consequently there exists a definite relation between the components of

the barred and unbarred tensors components. Recall that if we are given a set of transformation equations
y' =y'(a' 2% 2%),i =1,2,3, (1.3.79)

from rectangular to generalized curvilinear coordinates, we can express the basis vectors in the new system

by the equations

= Oyl .
E = 8—:;’:1. 8, i=123 (1.3.80)
For example, see equations (1.3.11) with y! = x,9? = y,y®> = 2,2 = u,2? = v,2® = w. Substituting
equations (1.3.80) into equations (1.3.78) we obtain
_ oy . 0y® oy .
Qij...k = @(W €q, % 85, ey % e,y).

By the linearity property of ¢, this equation is expressible in the form
oy~ oyP oy”

Eijmk = 83;1 % . W@(ea, €s3,..., e,\/)
_ oyroy® oy
R T TR

This is the familiar transformation law for a covariant tensor of degree M. By selecting reciprocal basis
vectors the corresponding transformation laws for contravariant vectors can be determined.
The above examples illustrate that tensors can be considered as quantities derivable from multilinear

forms defined on some vector space.
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Dual Tensors

The e-permutation symbol is often used to generate new tensors from given tensors. For T, i a

skew-symmetric tensor, we define the tensor

AL . 1 .. . o .
J1J2-In—m — ___ 5J1J2--Jn—ml122...% L. .
T n—m _— m'e n—m '"Tzlzz.“zm

m<n (1.3.81)

as the dual tensor associated with T;,;,. Note that the e-permutation symbol or alternating tensor has

Sl

a weight of +1 and consequently the dual tensor will have a higher weight than the original tensor.

The e-permutation symbol has the following properties

e Ne iy iy = NI
1192...0N L. ) __ Sh1i2.. 4N
€ €rjain = Ojiga jn

J1j2.--Jmitia...iN —m o NIsdidedm (1.3.82)
€ = (N —m)lo
Ykike..km

Ckika..kmitiz...iN—m
J1j2-dmop )
6k1k2...k‘7nlej2"']7n =Ty by k-
Using the above properties we can solve for the skew-symmetric tensor in terms of the dual tensor. We find

1 o
_ L J12 - Jin—
= )’ell742~~~'Lm]1]2~~~]n7mT o, (1.3.83)

Tisia. (n—m

o lm

For example, if A;;¢,7 =1,2,3 is a skew-symmetric tensor, we may associate with it the dual tensor

which is a first order tensor or vector. Note that A;; has the components

0 Az Ass
—Aiz 0 Ags (1.3.84)
—Aiz —Ass O

and consequently, the components of the vector V are
(V1 V2, V%) = (Ags, Az1, Ara). (1.3.85)

Note that the vector components have a cyclic order to the indices which comes from the cyclic properties
of the e-permutation symbol.
As another example, consider the fourth order skew-symmetric tensor Ajjr, 4,4, k, 0 =1,...,n. We can

associate with this tensor any of the dual tensor quantities

|14 Z%GUMAUM
Vi :%eijklmAjklm
& :%eiﬂ'klmmklmn (1.3.86)
yidk :%eijklmnpAlmnp
yidkl :%eijk:lmnprAmin

Applications of dual tensors can be found in section 2.2.



EXERCISE 1.3

> 1.
h formation law for th 7 O 0a”
(a) From the transformation law for the second order tensor 9ij = g“bﬁﬁ
solve for the gqp in terms of g;;.
(b) Show that if g;; is symmetric in one coordinate system it is symmetric in all coordinate systems.
(c) Let g = det(g;;) and g = det(gi;) and show that g = gJ*(£) and consequently V7= \/EJ(%) This

shows that g is a scalar invariant of weight 2 and /g is a scalar invariant of weight 1.

» 2. For Dum 9 .
Y™ Jy™ - zt Oxd

= Y ghow that ¢ = = 7T

9id = pgi g OOV AL Oy™ Oy™

» 3. Show that in a curvilinear coordinate system which is orthogonal we have:

(a) g = det(gij) = 911922933
(b) 9mn = gm/n =0 for m ;é n

1
(¢) g"N = —— for N=1,2,3 (no summation on N)
gNN
oyl . .
» 4. Show that g = det(g;;) = 207 | = J*, where J is the Jacobian.
x
» 5. Define the quantities h; = h,, = |ﬁ|, hy = hy = |ﬁ|, hs = hy = |ﬁ| and construct the unit
ou ov ow
vectors
o lor o _1or o 1or
“T hy U Y hy OV Y hg Ow’

(a) Assume the coordinate system is orthogonal and show that
ox\? dy 2 02\ 2
—p2 == ZJ hded
== (5) (1) +(5)
oz 2 dy 2 02\ 2
—p2=(Z= hid o
m=ti=(5) +(50) + (&)
oz \? oy 2 0z \?
—_p2 [ = _J _—
933 = Iy = (5‘10) + (811)) + (5‘10) '
ow that dr can be expressed in the form dr = hy e, du + ho €, dv + hsz e, dw.
b) Sh hat dr’ b d in the f d¥ = hi€,d ho €, dv + hz €, d

(c) Show that the volume of the elemental parallelepiped having di as diagonal can be represented

dr = /g dudvdw = J dudvdw = % dudvdw.

Hint:
A Ay As

|A-(BxC)|=|B By Bs
C, Cy C
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» 6.

> 7.

> 8.
» 9.

» 10.
> 11.
> 12.

Figure 1.3-18 Oblique cylindrical coordinates.

For the change dr given in problem 5, show the elemental parallelepiped with diagonal dr* has:

the element of area dS; = 1/ g22g33 — 953 dvdw in the u =constant surface.
The element of area dSs = 1/g33911 — gf?, dudw in the v =constant surface.

the element of area dS3 = \/g11922 — 935 dudv in the w =constant surface.

What do the above elements of area reduce to in the special case the curvilinear coordinates are orthog-

Ax Bl = \/(Ax B)- (Ax B)

onal? Hint:

-, —

—\J(A-AB-B)- (A B)A-B)
In Cartesian coordinates you are given the affine transformation. Z; = ¢;;; where

1
T = (10(1,'1 + 229 — 11%3)

1 1
(51’1 — 1429 + 2%3), To = —5(2([:1 + 22 + 21’3), Ty = 1—5

15
Show the transformation is orthogonal.

A vector E(ml, Z9,x3) in the unbarred system has the components
Ar = (z1)?, Ay = (z2)° Az = (z3)%
Find the components of this vector in the barred system of coordinates.

Calculate the metric and conjugate metric tensors in cylindrical coordinates (r, 0, z).

Calculate the metric and conjugate metric tensors in spherical coordinates (p, 8, ¢).
Calculate the metric and conjugate metric tensors in parabolic cylindrical coordinates (&, 7, z).
Calculate the metric and conjugate metric components in elliptic cylindrical coordinates (&, 7, z).

Calculate the metric and conjugate metric components for the oblique cylindrical coordinates (r, ¢,7),

illustrated in figure 1.3-18, where x = rcos¢, y = rsing + ncosa, 2z = nysina and « is a parameter

0 <a < 7. Note: When a = 7 cylindrical coordinates result.

2



» 13. Calculate the metric and conjugate metric tensor associated with the toroidal surface coordinates
(&, ) illustrated in the figure 1.3-19, where

x = (a+bcos&)cosn a>b>0
y = (a+bcos§)sinn 0<€&<2m

z =bsin¢ 0<n<2rm

Figure 1.3-19. Toroidal surface coordinates

» 14. Calculate the metric and conjugate metric tensor associated with the spherical surface coordinates
(0, @), illustrated in the figure 1.3-20, where

x = asinf cos ¢ a >0 1is constant
y = asinfsin ¢ 0<¢<2m
77
z=acosf 0<0< B
» 15. Consider g;j, ¢,7 =1,2
—g12 1
(a) Show that g*' = %, g =g = %, g = % where A = g11g22 — g12921.

(b) Use the results in part (a) and verify that g;;¢" = (5;-“, i, 7, k=1,2.

» 16. Let A;, Ay, A, denote the constant components of a vector in Cartesian coordinates. Using the
transformation laws (1.2.42) and (1.2.47) to find the contravariant and covariant components of this vector
upon changing to (a) cylindrical coordinates (r, 0, z). (b) spherical coordinates (p, 8, ¢) and (c) Parabolic

cylindrical coordinates.

» 17. Find the relationship which exists between the given associated tensors.
(a) AP™ and AP () A%, and A7
(b) AP, and AP (d) Apng and A7

S
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Figure 1.3-20. Spherical surface coordinates

» 18. Given the fourth order tensor Cikmp = Adirdmp + 1(0imOkp + JipOtm ) + V(dimOkp — ipOrm ) Where A, p
and v are scalars and d;; is the Kronecker delta. Show that under an orthogonal transformation of rotation of
axes with T; = l;;2; where €,.4l;s = 1 lmi = 0ri the components of the above tensor are unaltered. Any
tensor whose components are unaltered under an orthogonal transformation is called an ‘isotropic’ tensor.

Another way of stating this problem is to say “Show Cip,)p is an isotropic tensor.”

» 19. Assume A;j; is a third order covariant tensor and BP4™" is a fourth order contravariant tensor. Prove

that A;x B¥™" is a mixed tensor of order three, with one covariant and two contravariant indices.

» 20. Assume that T},y,s is an absolute tensor. Show that if Tj;5; + T35, = 0 in the coordinate system z”

then Tijkl + Tijlk = 0 in any other coordinate system z".

» 21. Show that

9ir  Gis  Git
€ijk€rst = | 9jr Yjs  Gjt
9kr  YGks Gkt

Hint: See problem 38, Exercise 1.1
» 22. Determine if the tensor equation €pynp€mij + €mnj€mpi = Emni€mp; is true or false. Justify your answer.

» 23. Prove the epsilon identity g% €ipt€irs = Jprgts — GpsGer- Hint: See problem 38, Exercise 1.1

mn

1
» 24. Let A™ denote a skew-symmetric contravariant tensor and let ¢, = §ermnA where

€rmn = \/G€rmn. Show that ¢, are the components of a covariant tensor. Write out all the components.

. . 1
» 25. Let A,s denote a skew-symmetric covariant tensor and let ¢ = §erm"Amn where ™" = —e"™",

Show that ¢" are the components of a contravariant tensor. Write out all the components.
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» 26. Let A, Bj® = C,,. where B is a relative tensor of weight w; and Cj,. is a relative tensor of weight

wa. Prove that A, is a relative tensor of weight (wo — w1).
» 27. When Aé- is an absolute tensor prove that \/EA; is a relative tensor of weight +1.
» 28. When A; is an absolute tensor prove that %A; is a relative tensor of weight —1.

> 29.

(a) Show e'/* is a relative tensor of weight +1.

(b) Show ¢ = %e”k is an absolute tensor. Hint: See example 1.1-25.

» 30. The equation of a surface can be represented by an equation of the form ®(x',2?% %) = constant.
Show that a unit normal vector to the surface can be represented by the vector
ij 0P
i 9%

(9™ o 5 )®

» 31. Assume that g;; = Agi; with A a nonzero constant. Find and calculate 7% in terms of g%.
» 32. Determine if the following tensor equation is true. Justify your answer.
€rjkAi + €irk A} + €ijr Af, = €k AL
Hint: See problem 21, Exercise 1.1.
» 33. Show that for C; and C' associated tensors, and C? = eijkAjBk, then C; = eijkAjBk
» 34. Prove that €% and €i;5 are associated tensors. Hint: Consider the determinant of g;;.
» 35. Show ¢7*A;B;C), = ;1 A'BIC*.

» 36. Let Tj , 1,5 = 1,2,3 denote a second order mixed tensor. Show that the given quantities are scalar

invariants. ]
(1) L =T
(i) = (T} ~T5T"]
(iii) Is = det|T}|
> 37.

(a) Assume AY and B%Y, i, j = 1,2,3 are absolute contravariant tensors, and determine if the inner product
C"* = A" B7* ig an absolute tensor?

7 O
(b) Assume that the condition 0T O

92 B Onm is satisfied, and determine whether the inner product in
™ Ox™

part (a) is a tensor?
(c) Consider only transformations which are a rotation and translation of axes7; = ¢;;y; + b;, where ¢;; are
9%; 9%;
OYn Oym

direction cosines for the rotation of axes. Show that

nm
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> 38. For A;j, a Cartesian tensor, determine if a contraction on the indices ¢ and j is allowed. That
is, determine if the quantity Ay = A, (summation on i) is a tensor. Hint: See part(c) of the previous
problem.

» 39. Prove the e-§ identity e esn = 5%(52 - 5%51%.

» 40. Consider the vector Vi, k = 1,2,3 and define the matrix (a;;) having the elements a;; = e Vi,
where e;;1, is the e—permutation symbol.
(a) Solve for V; in terms of a,,, by multiplying both sides of the given equation by e¥! and note the e — &
identity allows us to simplify the result.
(b) Sum the given expression on k and then assign values to the free indices (i,j=1,2,3) and compare your
results with part (a).

(c) Is a;; symmetric, skew-symmetric, or neither?

» 41. It can be shown that the continuity equation of fluid dynamics can be expressed in the tensor form

1 0 o, 0o
V7 oar VIOV =0

where ¢ is the density of the fluid, ¢ is time, V", with r = 1, 2,3 are the velocity components and g = |g;;|
is the determinant of the metric tensor. Employing the summation convention and replacing the tensor

components of velocity by their physical components, express the continuity equation in

(a) Cartesian coordinates (z,y, z) with physical components V,, V,,, V..
(b) Cylindrical coordinates (r, §, z) with physical components V., Vp, V.
(c) Spherical coordinates (p, 6, ¢) with physical components V,,, Vg, V.

» 42. Let 2!, 22, 22 denote a set of skewed coordinates with respect to the Cartesian coordinates y*, 32, y°.
Assume that El, Eg, Eg are unit vectors in the directions of the z', 22 and 3 axes respectively. If the unit

vectors satisfy the relations

El-Elzl El-ﬁgzcosﬁlg
52'52:1 E1~E32008913
Eg 'Eg =1 E2E3 :(308923,

then calculate the metrices g;; and conjugate metrices g4,

» 43. Let A;;, 14,5 =1,2,3,4 denote the skew-symmetric second rank tensor

0 a b ¢

—a 0 d e
A= g o rl

—c —e —f 0

where a, b, c,d, e, f are complex constants. Calculate the components of the dual tensor

.. 1 ..
VY = §€”klAkl.



» 44. In Cartesian coordinates the vorticity tensor at a point in a fluid medium is defined

o _1fov; oV
Yi =5\ o T 0a

where V; are the velocity components of the fluid at the point. The vorticity vector at a point in a fluid
ik

1.
medium in Cartesian coordinates is defined by w* = 561 wjk. Show that these tensors are dual tensors.

» 45. Write out the relation between each of the components of the dual tensors
“ 1 ..
Twzaw“nl@$h1=L1&4
and show that if ijkl is an even permutation of 1234, then 7% = T},;.

> 46. Consider the general affine transformation z; = a;jz; where (z',2% 23) = (z,y,2) with inverse
transformation x; = b;;Z;. Determine (a) the image of the plane Az + By + Cz + D = 0 under this

transformation and (b) the image of a second degree conic section

Ax? +2Bry+ Cy? + Dx+ Ey + F = 0.

» 47.  Using a multilinear form of degree M, derive the transformation law for a contravariant vector of

degree M.

0 .- 0ij
> 48. Let g denote the determinant of g;; and show that 99 _ gg" 99is.
Ok Oxk

» 49. We have shown that for a rotation of zyz axes with respect to a set of fixed ZyZz axes, the derivative

of a vector A with respect to an observer on the barred axes is given by

dA dl‘+qxg
—| =— « .
dt f dt |,
Introduce the operators
- dA T
DA =7l = derivative in fixed system
f
L dA o :
DA =7l = derivative in rotating system
T

(a) Show that ng: (D, + @x)A.
(b) Consider the special case that the vector A is the position vector 7. Show that D7 = (Dy + &)1
produces ‘7‘ =V

f f

represents the velocity of a particle with respect to the rotating system of coordinates.
T

(c¢) Show that @

+ & x 7 where V represents the velocity of a particle relative to the fixed system

T

and V

—

= a

+ & x (J x 7) where @
T

represents the acceleration of a particle relative to the

f

fixed system and @

f

represents the acceleration of a particle with respect to the rotating system.

T
(d) Show in the special case & is a constant that

@ =28 xV+a&x (&x7)

I
where V is the velocity of the particle relative to the rotating system. The term 24 x V is referred to

as the Coriolis acceleration and the term & x (J x 7) is referred to as the centripetal acceleration.
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